T-points: a codimension two heteroclinic bifurcation

The local bifurcation structure of a heteroclinic which has been observed in the Lorenz equations is analyzed. The existence of a particular heteroclinic loop at one point in a two-dimensional parameter space (a ''T point'') implies the existence of a line of heteroclinc loops an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Stat. Phys.; (United States) 1986-05, Vol.43 (3-4), p.479-488
Hauptverfasser: GLENDINNING, P, SPARROW, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 488
container_issue 3-4
container_start_page 479
container_title J. Stat. Phys.; (United States)
container_volume 43
creator GLENDINNING, P
SPARROW, C
description The local bifurcation structure of a heteroclinic which has been observed in the Lorenz equations is analyzed. The existence of a particular heteroclinic loop at one point in a two-dimensional parameter space (a ''T point'') implies the existence of a line of heteroclinc loops and a logarithmic spiral of homoclinic orbits, as well as countably many other topologically more complicated T points in a small neigborhood in a parameter space.
doi_str_mv 10.1007/BF01020649
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01020649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>8053267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-aeb6613d0d696e381829de1571d144d730667fc6673acf922d6f0ec26e8f43b13</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWKsXP8EinoTVyZ_NbrxpsSoUvNTzkk4SGmmTkkTEb29KRS9vDu83M49HyCWFWwrQ3z3OgQIDKdQRmdCuZ62SlB-TCQBjrehpd0rOcv4AADWobkLEst1FH0q-b3SD0fitDdnH0JSv2KxtsSnixgePzcq7z4S6VPOcnDi9yfbid07J-_xpOXtpF2_Pr7OHRYtM8NJqu5L1uwEjlbR8oANTxtZU1FAhTM9Byt5hFa7RKcaMdGCRSTs4wVeUT8nV4W7MxY8ZfbG4xhiCxTJKxSXnqkI3BwhTzDlZN-6S3-r0PVIY96WM_6VU-PoA73RGvXFJB_T5b2OAjrMa5wdJgl8K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>T-points: a codimension two heteroclinic bifurcation</title><source>SpringerLink (Online service)</source><creator>GLENDINNING, P ; SPARROW, C</creator><creatorcontrib>GLENDINNING, P ; SPARROW, C ; Univ. of Warwick, Coventry</creatorcontrib><description>The local bifurcation structure of a heteroclinic which has been observed in the Lorenz equations is analyzed. The existence of a particular heteroclinic loop at one point in a two-dimensional parameter space (a ''T point'') implies the existence of a line of heteroclinc loops and a logarithmic spiral of homoclinic orbits, as well as countably many other topologically more complicated T points in a small neigborhood in a parameter space.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/BF01020649</identifier><identifier>CODEN: JSTPBS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Exact sciences and technology ; FIELD THEORIES ; GENERAL RELATIVITY THEORY ; Geometry, differential geometry, and topology ; INVARIANCE PRINCIPLES ; LORENTZ INVARIANCE ; LORENTZ TRANSFORMATIONS ; MAPPING ; MATHEMATICAL MANIFOLDS ; Mathematical methods in physics ; MATHEMATICS ; Physics ; RELATIVITY THEORY ; TOPOLOGICAL MAPPING ; TOPOLOGY ; TRAJECTORIES ; TRANSFORMATIONS ; TWO-DIMENSIONAL CALCULATIONS</subject><ispartof>J. Stat. Phys.; (United States), 1986-05, Vol.43 (3-4), p.479-488</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-aeb6613d0d696e381829de1571d144d730667fc6673acf922d6f0ec26e8f43b13</citedby><cites>FETCH-LOGICAL-c243t-aeb6613d0d696e381829de1571d144d730667fc6673acf922d6f0ec26e8f43b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8053267$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6936339$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>GLENDINNING, P</creatorcontrib><creatorcontrib>SPARROW, C</creatorcontrib><creatorcontrib>Univ. of Warwick, Coventry</creatorcontrib><title>T-points: a codimension two heteroclinic bifurcation</title><title>J. Stat. Phys.; (United States)</title><description>The local bifurcation structure of a heteroclinic which has been observed in the Lorenz equations is analyzed. The existence of a particular heteroclinic loop at one point in a two-dimensional parameter space (a ''T point'') implies the existence of a line of heteroclinc loops and a logarithmic spiral of homoclinic orbits, as well as countably many other topologically more complicated T points in a small neigborhood in a parameter space.</description><subject>657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Exact sciences and technology</subject><subject>FIELD THEORIES</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>Geometry, differential geometry, and topology</subject><subject>INVARIANCE PRINCIPLES</subject><subject>LORENTZ INVARIANCE</subject><subject>LORENTZ TRANSFORMATIONS</subject><subject>MAPPING</subject><subject>MATHEMATICAL MANIFOLDS</subject><subject>Mathematical methods in physics</subject><subject>MATHEMATICS</subject><subject>Physics</subject><subject>RELATIVITY THEORY</subject><subject>TOPOLOGICAL MAPPING</subject><subject>TOPOLOGY</subject><subject>TRAJECTORIES</subject><subject>TRANSFORMATIONS</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEQxYMoWKsXP8EinoTVyZ_NbrxpsSoUvNTzkk4SGmmTkkTEb29KRS9vDu83M49HyCWFWwrQ3z3OgQIDKdQRmdCuZ62SlB-TCQBjrehpd0rOcv4AADWobkLEst1FH0q-b3SD0fitDdnH0JSv2KxtsSnixgePzcq7z4S6VPOcnDi9yfbid07J-_xpOXtpF2_Pr7OHRYtM8NJqu5L1uwEjlbR8oANTxtZU1FAhTM9Byt5hFa7RKcaMdGCRSTs4wVeUT8nV4W7MxY8ZfbG4xhiCxTJKxSXnqkI3BwhTzDlZN-6S3-r0PVIY96WM_6VU-PoA73RGvXFJB_T5b2OAjrMa5wdJgl8K</recordid><startdate>198605</startdate><enddate>198605</enddate><creator>GLENDINNING, P</creator><creator>SPARROW, C</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198605</creationdate><title>T-points: a codimension two heteroclinic bifurcation</title><author>GLENDINNING, P ; SPARROW, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-aeb6613d0d696e381829de1571d144d730667fc6673acf922d6f0ec26e8f43b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Exact sciences and technology</topic><topic>FIELD THEORIES</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>Geometry, differential geometry, and topology</topic><topic>INVARIANCE PRINCIPLES</topic><topic>LORENTZ INVARIANCE</topic><topic>LORENTZ TRANSFORMATIONS</topic><topic>MAPPING</topic><topic>MATHEMATICAL MANIFOLDS</topic><topic>Mathematical methods in physics</topic><topic>MATHEMATICS</topic><topic>Physics</topic><topic>RELATIVITY THEORY</topic><topic>TOPOLOGICAL MAPPING</topic><topic>TOPOLOGY</topic><topic>TRAJECTORIES</topic><topic>TRANSFORMATIONS</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GLENDINNING, P</creatorcontrib><creatorcontrib>SPARROW, C</creatorcontrib><creatorcontrib>Univ. of Warwick, Coventry</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Stat. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GLENDINNING, P</au><au>SPARROW, C</au><aucorp>Univ. of Warwick, Coventry</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>T-points: a codimension two heteroclinic bifurcation</atitle><jtitle>J. Stat. Phys.; (United States)</jtitle><date>1986-05</date><risdate>1986</risdate><volume>43</volume><issue>3-4</issue><spage>479</spage><epage>488</epage><pages>479-488</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><coden>JSTPBS</coden><abstract>The local bifurcation structure of a heteroclinic which has been observed in the Lorenz equations is analyzed. The existence of a particular heteroclinic loop at one point in a two-dimensional parameter space (a ''T point'') implies the existence of a line of heteroclinc loops and a logarithmic spiral of homoclinic orbits, as well as countably many other topologically more complicated T points in a small neigborhood in a parameter space.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF01020649</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof J. Stat. Phys.; (United States), 1986-05, Vol.43 (3-4), p.479-488
issn 0022-4715
1572-9613
language eng
recordid cdi_crossref_primary_10_1007_BF01020649
source SpringerLink (Online service)
subjects 657003 - Theoretical & Mathematical Physics- Relativity & Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Exact sciences and technology
FIELD THEORIES
GENERAL RELATIVITY THEORY
Geometry, differential geometry, and topology
INVARIANCE PRINCIPLES
LORENTZ INVARIANCE
LORENTZ TRANSFORMATIONS
MAPPING
MATHEMATICAL MANIFOLDS
Mathematical methods in physics
MATHEMATICS
Physics
RELATIVITY THEORY
TOPOLOGICAL MAPPING
TOPOLOGY
TRAJECTORIES
TRANSFORMATIONS
TWO-DIMENSIONAL CALCULATIONS
title T-points: a codimension two heteroclinic bifurcation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=T-points:%20a%20codimension%20two%20heteroclinic%20bifurcation&rft.jtitle=J.%20Stat.%20Phys.;%20(United%20States)&rft.au=GLENDINNING,%20P&rft.aucorp=Univ.%20of%20Warwick,%20Coventry&rft.date=1986-05&rft.volume=43&rft.issue=3-4&rft.spage=479&rft.epage=488&rft.pages=479-488&rft.issn=0022-4715&rft.eissn=1572-9613&rft.coden=JSTPBS&rft_id=info:doi/10.1007/BF01020649&rft_dat=%3Cpascalfrancis_osti_%3E8053267%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true