T-points: a codimension two heteroclinic bifurcation
The local bifurcation structure of a heteroclinic which has been observed in the Lorenz equations is analyzed. The existence of a particular heteroclinic loop at one point in a two-dimensional parameter space (a ''T point'') implies the existence of a line of heteroclinc loops an...
Gespeichert in:
Veröffentlicht in: | J. Stat. Phys.; (United States) 1986-05, Vol.43 (3-4), p.479-488 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 488 |
---|---|
container_issue | 3-4 |
container_start_page | 479 |
container_title | J. Stat. Phys.; (United States) |
container_volume | 43 |
creator | GLENDINNING, P SPARROW, C |
description | The local bifurcation structure of a heteroclinic which has been observed in the Lorenz equations is analyzed. The existence of a particular heteroclinic loop at one point in a two-dimensional parameter space (a ''T point'') implies the existence of a line of heteroclinc loops and a logarithmic spiral of homoclinic orbits, as well as countably many other topologically more complicated T points in a small neigborhood in a parameter space. |
doi_str_mv | 10.1007/BF01020649 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01020649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>8053267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-aeb6613d0d696e381829de1571d144d730667fc6673acf922d6f0ec26e8f43b13</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWKsXP8EinoTVyZ_NbrxpsSoUvNTzkk4SGmmTkkTEb29KRS9vDu83M49HyCWFWwrQ3z3OgQIDKdQRmdCuZ62SlB-TCQBjrehpd0rOcv4AADWobkLEst1FH0q-b3SD0fitDdnH0JSv2KxtsSnixgePzcq7z4S6VPOcnDi9yfbid07J-_xpOXtpF2_Pr7OHRYtM8NJqu5L1uwEjlbR8oANTxtZU1FAhTM9Byt5hFa7RKcaMdGCRSTs4wVeUT8nV4W7MxY8ZfbG4xhiCxTJKxSXnqkI3BwhTzDlZN-6S3-r0PVIY96WM_6VU-PoA73RGvXFJB_T5b2OAjrMa5wdJgl8K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>T-points: a codimension two heteroclinic bifurcation</title><source>SpringerLink (Online service)</source><creator>GLENDINNING, P ; SPARROW, C</creator><creatorcontrib>GLENDINNING, P ; SPARROW, C ; Univ. of Warwick, Coventry</creatorcontrib><description>The local bifurcation structure of a heteroclinic which has been observed in the Lorenz equations is analyzed. The existence of a particular heteroclinic loop at one point in a two-dimensional parameter space (a ''T point'') implies the existence of a line of heteroclinc loops and a logarithmic spiral of homoclinic orbits, as well as countably many other topologically more complicated T points in a small neigborhood in a parameter space.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/BF01020649</identifier><identifier>CODEN: JSTPBS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>657003 - Theoretical & Mathematical Physics- Relativity & Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Exact sciences and technology ; FIELD THEORIES ; GENERAL RELATIVITY THEORY ; Geometry, differential geometry, and topology ; INVARIANCE PRINCIPLES ; LORENTZ INVARIANCE ; LORENTZ TRANSFORMATIONS ; MAPPING ; MATHEMATICAL MANIFOLDS ; Mathematical methods in physics ; MATHEMATICS ; Physics ; RELATIVITY THEORY ; TOPOLOGICAL MAPPING ; TOPOLOGY ; TRAJECTORIES ; TRANSFORMATIONS ; TWO-DIMENSIONAL CALCULATIONS</subject><ispartof>J. Stat. Phys.; (United States), 1986-05, Vol.43 (3-4), p.479-488</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-aeb6613d0d696e381829de1571d144d730667fc6673acf922d6f0ec26e8f43b13</citedby><cites>FETCH-LOGICAL-c243t-aeb6613d0d696e381829de1571d144d730667fc6673acf922d6f0ec26e8f43b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8053267$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6936339$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>GLENDINNING, P</creatorcontrib><creatorcontrib>SPARROW, C</creatorcontrib><creatorcontrib>Univ. of Warwick, Coventry</creatorcontrib><title>T-points: a codimension two heteroclinic bifurcation</title><title>J. Stat. Phys.; (United States)</title><description>The local bifurcation structure of a heteroclinic which has been observed in the Lorenz equations is analyzed. The existence of a particular heteroclinic loop at one point in a two-dimensional parameter space (a ''T point'') implies the existence of a line of heteroclinc loops and a logarithmic spiral of homoclinic orbits, as well as countably many other topologically more complicated T points in a small neigborhood in a parameter space.</description><subject>657003 - Theoretical & Mathematical Physics- Relativity & Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Exact sciences and technology</subject><subject>FIELD THEORIES</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>Geometry, differential geometry, and topology</subject><subject>INVARIANCE PRINCIPLES</subject><subject>LORENTZ INVARIANCE</subject><subject>LORENTZ TRANSFORMATIONS</subject><subject>MAPPING</subject><subject>MATHEMATICAL MANIFOLDS</subject><subject>Mathematical methods in physics</subject><subject>MATHEMATICS</subject><subject>Physics</subject><subject>RELATIVITY THEORY</subject><subject>TOPOLOGICAL MAPPING</subject><subject>TOPOLOGY</subject><subject>TRAJECTORIES</subject><subject>TRANSFORMATIONS</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEQxYMoWKsXP8EinoTVyZ_NbrxpsSoUvNTzkk4SGmmTkkTEb29KRS9vDu83M49HyCWFWwrQ3z3OgQIDKdQRmdCuZ62SlB-TCQBjrehpd0rOcv4AADWobkLEst1FH0q-b3SD0fitDdnH0JSv2KxtsSnixgePzcq7z4S6VPOcnDi9yfbid07J-_xpOXtpF2_Pr7OHRYtM8NJqu5L1uwEjlbR8oANTxtZU1FAhTM9Byt5hFa7RKcaMdGCRSTs4wVeUT8nV4W7MxY8ZfbG4xhiCxTJKxSXnqkI3BwhTzDlZN-6S3-r0PVIY96WM_6VU-PoA73RGvXFJB_T5b2OAjrMa5wdJgl8K</recordid><startdate>198605</startdate><enddate>198605</enddate><creator>GLENDINNING, P</creator><creator>SPARROW, C</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198605</creationdate><title>T-points: a codimension two heteroclinic bifurcation</title><author>GLENDINNING, P ; SPARROW, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-aeb6613d0d696e381829de1571d144d730667fc6673acf922d6f0ec26e8f43b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>657003 - Theoretical & Mathematical Physics- Relativity & Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Exact sciences and technology</topic><topic>FIELD THEORIES</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>Geometry, differential geometry, and topology</topic><topic>INVARIANCE PRINCIPLES</topic><topic>LORENTZ INVARIANCE</topic><topic>LORENTZ TRANSFORMATIONS</topic><topic>MAPPING</topic><topic>MATHEMATICAL MANIFOLDS</topic><topic>Mathematical methods in physics</topic><topic>MATHEMATICS</topic><topic>Physics</topic><topic>RELATIVITY THEORY</topic><topic>TOPOLOGICAL MAPPING</topic><topic>TOPOLOGY</topic><topic>TRAJECTORIES</topic><topic>TRANSFORMATIONS</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GLENDINNING, P</creatorcontrib><creatorcontrib>SPARROW, C</creatorcontrib><creatorcontrib>Univ. of Warwick, Coventry</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Stat. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GLENDINNING, P</au><au>SPARROW, C</au><aucorp>Univ. of Warwick, Coventry</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>T-points: a codimension two heteroclinic bifurcation</atitle><jtitle>J. Stat. Phys.; (United States)</jtitle><date>1986-05</date><risdate>1986</risdate><volume>43</volume><issue>3-4</issue><spage>479</spage><epage>488</epage><pages>479-488</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><coden>JSTPBS</coden><abstract>The local bifurcation structure of a heteroclinic which has been observed in the Lorenz equations is analyzed. The existence of a particular heteroclinic loop at one point in a two-dimensional parameter space (a ''T point'') implies the existence of a line of heteroclinc loops and a logarithmic spiral of homoclinic orbits, as well as countably many other topologically more complicated T points in a small neigborhood in a parameter space.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF01020649</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | J. Stat. Phys.; (United States), 1986-05, Vol.43 (3-4), p.479-488 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_crossref_primary_10_1007_BF01020649 |
source | SpringerLink (Online service) |
subjects | 657003 - Theoretical & Mathematical Physics- Relativity & Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Exact sciences and technology FIELD THEORIES GENERAL RELATIVITY THEORY Geometry, differential geometry, and topology INVARIANCE PRINCIPLES LORENTZ INVARIANCE LORENTZ TRANSFORMATIONS MAPPING MATHEMATICAL MANIFOLDS Mathematical methods in physics MATHEMATICS Physics RELATIVITY THEORY TOPOLOGICAL MAPPING TOPOLOGY TRAJECTORIES TRANSFORMATIONS TWO-DIMENSIONAL CALCULATIONS |
title | T-points: a codimension two heteroclinic bifurcation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=T-points:%20a%20codimension%20two%20heteroclinic%20bifurcation&rft.jtitle=J.%20Stat.%20Phys.;%20(United%20States)&rft.au=GLENDINNING,%20P&rft.aucorp=Univ.%20of%20Warwick,%20Coventry&rft.date=1986-05&rft.volume=43&rft.issue=3-4&rft.spage=479&rft.epage=488&rft.pages=479-488&rft.issn=0022-4715&rft.eissn=1572-9613&rft.coden=JSTPBS&rft_id=info:doi/10.1007/BF01020649&rft_dat=%3Cpascalfrancis_osti_%3E8053267%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |