Expansions with respect to squares, symplectic and poisson structures associated with the Sturm-Liouville problem. II

The concept of tangent vector is made more precise to meet the specific nature of the Sturm-Liouville problem, and on this basis a Poisson bracket that is modified compared with the Gardner form by special boundary terms is derived from the Zakharov-Faddeev symplectic form. This bracket is nondegene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theor. Math. Phys.; (United States) 1988-05, Vol.75 (2), p.448-460
Hauptverfasser: Arkad'ev, V. A., Pogrebkov, A. K., Polivanov, M. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 460
container_issue 2
container_start_page 448
container_title Theor. Math. Phys.; (United States)
container_volume 75
creator Arkad'ev, V. A.
Pogrebkov, A. K.
Polivanov, M. K.
description The concept of tangent vector is made more precise to meet the specific nature of the Sturm-Liouville problem, and on this basis a Poisson bracket that is modified compared with the Gardner form by special boundary terms is derived from the Zakharov-Faddeev symplectic form. This bracket is nondegenerate, and in it the variables of the discrete and continuous spectra are separated.
doi_str_mv 10.1007/BF01017483
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01017483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_BF01017483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c171t-f3b22b32fbebba6cffdef4e538fe01ad588cb5e8fd625875c9cf00e07d6d8fa33</originalsourceid><addsrcrecordid>eNpFkFFLwzAUhYMoOKcv_oLgo9h507RN-qhj08HAB_W5pGnCIm1Te1Pd_r2RCT4d7rkfB84h5JrBggGI-8c1MGAik_yEzFgueFJyzk_JDCCDJBeiPCcXiB8QMZBsRqbVflA9Ot8j_XZhR0eDg9GBBk_xc1LxvKN46IY2mk5T1Td08A7R9xTDOOkwRYSqaGingmmOKWFn6Gt8dcnW-enLta2hw-jr1nQLutlckjOrWjRXfzon7-vV2_I52b48bZYP20QzwUJieZ2mNU9tbepaFdraxtjM5FxaA0w1uZS6zo20TZHmUuS61BbAgGiKRlrF-ZzcHHM9BlehdsHonfZ9H8tUBStEVooI3R4hPXrE0dhqGF2nxkPFoPpdtfpflf8A2MRtTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Expansions with respect to squares, symplectic and poisson structures associated with the Sturm-Liouville problem. II</title><source>SpringerNature Journals</source><creator>Arkad'ev, V. A. ; Pogrebkov, A. K. ; Polivanov, M. K.</creator><creatorcontrib>Arkad'ev, V. A. ; Pogrebkov, A. K. ; Polivanov, M. K. ; V.A. Steklov Mathematics Institute (USSR)</creatorcontrib><description>The concept of tangent vector is made more precise to meet the specific nature of the Sturm-Liouville problem, and on this basis a Poisson bracket that is modified compared with the Gardner form by special boundary terms is derived from the Zakharov-Faddeev symplectic form. This bracket is nondegenerate, and in it the variables of the discrete and continuous spectra are separated.</description><identifier>ISSN: 0040-5779</identifier><identifier>EISSN: 1573-9333</identifier><identifier>DOI: 10.1007/BF01017483</identifier><language>eng</language><publisher>United States</publisher><subject>645201 - High Energy Physics- Particle Interactions &amp; Properties-Theoretical- General &amp; Scattering Theory ; ANNIHILATION OPERATORS ; BOUNDARY CONDITIONS ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; FOURIER TRANSFORMATION ; HAMILTONIANS ; INTEGRAL TRANSFORMATIONS ; INVARIANCE PRINCIPLES ; KORTEWEG-DE VRIES EQUATION ; LIE GROUPS ; MAPPING ; MATHEMATICAL MANIFOLDS ; MATHEMATICAL OPERATORS ; PARTIAL DIFFERENTIAL EQUATIONS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; POISSON EQUATION ; QUANTUM OPERATORS ; SCATTERING ; SERIES EXPANSION ; SP GROUPS ; STURM-LIOUVILLE EQUATION ; SYMMETRY GROUPS ; TENSORS ; TOPOLOGICAL MAPPING ; TRANSFORMATIONS ; VECTORS</subject><ispartof>Theor. Math. Phys.; (United States), 1988-05, Vol.75 (2), p.448-460</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c171t-f3b22b32fbebba6cffdef4e538fe01ad588cb5e8fd625875c9cf00e07d6d8fa33</citedby><cites>FETCH-LOGICAL-c171t-f3b22b32fbebba6cffdef4e538fe01ad588cb5e8fd625875c9cf00e07d6d8fa33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6167497$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Arkad'ev, V. A.</creatorcontrib><creatorcontrib>Pogrebkov, A. K.</creatorcontrib><creatorcontrib>Polivanov, M. K.</creatorcontrib><creatorcontrib>V.A. Steklov Mathematics Institute (USSR)</creatorcontrib><title>Expansions with respect to squares, symplectic and poisson structures associated with the Sturm-Liouville problem. II</title><title>Theor. Math. Phys.; (United States)</title><description>The concept of tangent vector is made more precise to meet the specific nature of the Sturm-Liouville problem, and on this basis a Poisson bracket that is modified compared with the Gardner form by special boundary terms is derived from the Zakharov-Faddeev symplectic form. This bracket is nondegenerate, and in it the variables of the discrete and continuous spectra are separated.</description><subject>645201 - High Energy Physics- Particle Interactions &amp; Properties-Theoretical- General &amp; Scattering Theory</subject><subject>ANNIHILATION OPERATORS</subject><subject>BOUNDARY CONDITIONS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>FOURIER TRANSFORMATION</subject><subject>HAMILTONIANS</subject><subject>INTEGRAL TRANSFORMATIONS</subject><subject>INVARIANCE PRINCIPLES</subject><subject>KORTEWEG-DE VRIES EQUATION</subject><subject>LIE GROUPS</subject><subject>MAPPING</subject><subject>MATHEMATICAL MANIFOLDS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>POISSON EQUATION</subject><subject>QUANTUM OPERATORS</subject><subject>SCATTERING</subject><subject>SERIES EXPANSION</subject><subject>SP GROUPS</subject><subject>STURM-LIOUVILLE EQUATION</subject><subject>SYMMETRY GROUPS</subject><subject>TENSORS</subject><subject>TOPOLOGICAL MAPPING</subject><subject>TRANSFORMATIONS</subject><subject>VECTORS</subject><issn>0040-5779</issn><issn>1573-9333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNpFkFFLwzAUhYMoOKcv_oLgo9h507RN-qhj08HAB_W5pGnCIm1Te1Pd_r2RCT4d7rkfB84h5JrBggGI-8c1MGAik_yEzFgueFJyzk_JDCCDJBeiPCcXiB8QMZBsRqbVflA9Ot8j_XZhR0eDg9GBBk_xc1LxvKN46IY2mk5T1Td08A7R9xTDOOkwRYSqaGingmmOKWFn6Gt8dcnW-enLta2hw-jr1nQLutlckjOrWjRXfzon7-vV2_I52b48bZYP20QzwUJieZ2mNU9tbepaFdraxtjM5FxaA0w1uZS6zo20TZHmUuS61BbAgGiKRlrF-ZzcHHM9BlehdsHonfZ9H8tUBStEVooI3R4hPXrE0dhqGF2nxkPFoPpdtfpflf8A2MRtTA</recordid><startdate>198805</startdate><enddate>198805</enddate><creator>Arkad'ev, V. A.</creator><creator>Pogrebkov, A. K.</creator><creator>Polivanov, M. K.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198805</creationdate><title>Expansions with respect to squares, symplectic and poisson structures associated with the Sturm-Liouville problem. II</title><author>Arkad'ev, V. A. ; Pogrebkov, A. K. ; Polivanov, M. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c171t-f3b22b32fbebba6cffdef4e538fe01ad588cb5e8fd625875c9cf00e07d6d8fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>645201 - High Energy Physics- Particle Interactions &amp; Properties-Theoretical- General &amp; Scattering Theory</topic><topic>ANNIHILATION OPERATORS</topic><topic>BOUNDARY CONDITIONS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>FOURIER TRANSFORMATION</topic><topic>HAMILTONIANS</topic><topic>INTEGRAL TRANSFORMATIONS</topic><topic>INVARIANCE PRINCIPLES</topic><topic>KORTEWEG-DE VRIES EQUATION</topic><topic>LIE GROUPS</topic><topic>MAPPING</topic><topic>MATHEMATICAL MANIFOLDS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>POISSON EQUATION</topic><topic>QUANTUM OPERATORS</topic><topic>SCATTERING</topic><topic>SERIES EXPANSION</topic><topic>SP GROUPS</topic><topic>STURM-LIOUVILLE EQUATION</topic><topic>SYMMETRY GROUPS</topic><topic>TENSORS</topic><topic>TOPOLOGICAL MAPPING</topic><topic>TRANSFORMATIONS</topic><topic>VECTORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arkad'ev, V. A.</creatorcontrib><creatorcontrib>Pogrebkov, A. K.</creatorcontrib><creatorcontrib>Polivanov, M. K.</creatorcontrib><creatorcontrib>V.A. Steklov Mathematics Institute (USSR)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Theor. Math. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arkad'ev, V. A.</au><au>Pogrebkov, A. K.</au><au>Polivanov, M. K.</au><aucorp>V.A. Steklov Mathematics Institute (USSR)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expansions with respect to squares, symplectic and poisson structures associated with the Sturm-Liouville problem. II</atitle><jtitle>Theor. Math. Phys.; (United States)</jtitle><date>1988-05</date><risdate>1988</risdate><volume>75</volume><issue>2</issue><spage>448</spage><epage>460</epage><pages>448-460</pages><issn>0040-5779</issn><eissn>1573-9333</eissn><abstract>The concept of tangent vector is made more precise to meet the specific nature of the Sturm-Liouville problem, and on this basis a Poisson bracket that is modified compared with the Gardner form by special boundary terms is derived from the Zakharov-Faddeev symplectic form. This bracket is nondegenerate, and in it the variables of the discrete and continuous spectra are separated.</abstract><cop>United States</cop><doi>10.1007/BF01017483</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5779
ispartof Theor. Math. Phys.; (United States), 1988-05, Vol.75 (2), p.448-460
issn 0040-5779
1573-9333
language eng
recordid cdi_crossref_primary_10_1007_BF01017483
source SpringerNature Journals
subjects 645201 - High Energy Physics- Particle Interactions & Properties-Theoretical- General & Scattering Theory
ANNIHILATION OPERATORS
BOUNDARY CONDITIONS
DIFFERENTIAL EQUATIONS
EQUATIONS
FOURIER TRANSFORMATION
HAMILTONIANS
INTEGRAL TRANSFORMATIONS
INVARIANCE PRINCIPLES
KORTEWEG-DE VRIES EQUATION
LIE GROUPS
MAPPING
MATHEMATICAL MANIFOLDS
MATHEMATICAL OPERATORS
PARTIAL DIFFERENTIAL EQUATIONS
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
POISSON EQUATION
QUANTUM OPERATORS
SCATTERING
SERIES EXPANSION
SP GROUPS
STURM-LIOUVILLE EQUATION
SYMMETRY GROUPS
TENSORS
TOPOLOGICAL MAPPING
TRANSFORMATIONS
VECTORS
title Expansions with respect to squares, symplectic and poisson structures associated with the Sturm-Liouville problem. II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expansions%20with%20respect%20to%20squares,%20symplectic%20and%20poisson%20structures%20associated%20with%20the%20Sturm-Liouville%20problem.%20II&rft.jtitle=Theor.%20Math.%20Phys.;%20(United%20States)&rft.au=Arkad'ev,%20V.%20A.&rft.aucorp=V.A.%20Steklov%20Mathematics%20Institute%20(USSR)&rft.date=1988-05&rft.volume=75&rft.issue=2&rft.spage=448&rft.epage=460&rft.pages=448-460&rft.issn=0040-5779&rft.eissn=1573-9333&rft_id=info:doi/10.1007/BF01017483&rft_dat=%3Ccrossref_osti_%3E10_1007_BF01017483%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true