Asymptotic and essentially singular solutions of the Feigenbaum equation

For suitably defined large N, we express Feigenbaum's equation as a singular Schroder functional equation whose solution is obtained using a scaling ansatz. In the limit of infinite N certain self-consistency conditions on the scaled Schroder solution lead to an essentially singular solution of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Stat. Phys.; (United States) 1988-06, Vol.51 (5-6), p.991-1007
Hauptverfasser: Thompson, Colin J., McGuire, J. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1007
container_issue 5-6
container_start_page 991
container_title J. Stat. Phys.; (United States)
container_volume 51
creator Thompson, Colin J.
McGuire, J. B.
description For suitably defined large N, we express Feigenbaum's equation as a singular Schroder functional equation whose solution is obtained using a scaling ansatz. In the limit of infinite N certain self-consistency conditions on the scaled Schroder solution lead to an essentially singular solution of Feigenbaum's equation with a length scale factor of ..cap alpha.. approx. = 0.0333 and a limiting feigenvalue of delta/sub infinity/approx. = 30.50, in agreement with Eckmann and Wittwer's values of ..cap alpha.. = 0.0333831... and their conjectured estimate of delta/sub infinity/ less than or equal to 30.
doi_str_mv 10.1007/BF01014896
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01014896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_BF01014896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-6722f50977cbea9d4cbfae73f525fc668e4b2f862f7dfb122ce2b510f839bdad3</originalsourceid><addsrcrecordid>eNpFkMFLwzAchYMoOKcX_4LgUagmaZM0xzmsEwZe9FyS9Jct0iazSQ_9792Y4Okd3uOD9yF0T8kTJUQ-vzSEElrVSlygBeWSFUrQ8hItCGGsqCTl1-gmpW9CiKoVX6DNKs3DIcfsLdahw5AShOx13884-bCbej3iFPsp-xgSjg7nPeAG_A6C0dOA4WfSp-4WXTndJ7j7yyX6al4_15ti-_H2vl5tC8u4yIWQjDlOlJTWgFZdZY3TIEvHGXdWiBoqw1wtmJOdM5QxC8xwSlxdKtPprlyihzM3puzbZH0Gu7cxBLC5PX49ksVx9Hge2TGmNIJrD6Mf9Di3lLQnUe2_qPIXCqhb8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic and essentially singular solutions of the Feigenbaum equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Thompson, Colin J. ; McGuire, J. B.</creator><creatorcontrib>Thompson, Colin J. ; McGuire, J. B. ; Univ. of California, Santa Barbara (USA)</creatorcontrib><description>For suitably defined large N, we express Feigenbaum's equation as a singular Schroder functional equation whose solution is obtained using a scaling ansatz. In the limit of infinite N certain self-consistency conditions on the scaled Schroder solution lead to an essentially singular solution of Feigenbaum's equation with a length scale factor of ..cap alpha.. approx. = 0.0333 and a limiting feigenvalue of delta/sub infinity/approx. = 30.50, in agreement with Eckmann and Wittwer's values of ..cap alpha.. = 0.0333831... and their conjectured estimate of delta/sub infinity/ less than or equal to 30.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/BF01014896</identifier><language>eng</language><publisher>United States</publisher><subject>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics ; ALGORITHMS ; ASYMPTOTIC SOLUTIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPUTERIZED SIMULATION ; CONVERGENCE ; EIGENVALUES ; EQUATIONS ; FUNCTIONALS ; FUNCTIONS ; ITERATIVE METHODS ; MATHEMATICAL LOGIC ; MATHEMATICAL MANIFOLDS ; MATHEMATICAL SPACE ; MATHEMATICS ; MECHANICS ; NUMERICAL SOLUTION ; SIMULATION ; SINGULARITY ; SPACE ; STATISTICAL MECHANICS ; TOPOLOGY ; TRANSFORMATIONS</subject><ispartof>J. Stat. Phys.; (United States), 1988-06, Vol.51 (5-6), p.991-1007</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-6722f50977cbea9d4cbfae73f525fc668e4b2f862f7dfb122ce2b510f839bdad3</citedby><cites>FETCH-LOGICAL-c256t-6722f50977cbea9d4cbfae73f525fc668e4b2f862f7dfb122ce2b510f839bdad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6139776$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Colin J.</creatorcontrib><creatorcontrib>McGuire, J. B.</creatorcontrib><creatorcontrib>Univ. of California, Santa Barbara (USA)</creatorcontrib><title>Asymptotic and essentially singular solutions of the Feigenbaum equation</title><title>J. Stat. Phys.; (United States)</title><description>For suitably defined large N, we express Feigenbaum's equation as a singular Schroder functional equation whose solution is obtained using a scaling ansatz. In the limit of infinite N certain self-consistency conditions on the scaled Schroder solution lead to an essentially singular solution of Feigenbaum's equation with a length scale factor of ..cap alpha.. approx. = 0.0333 and a limiting feigenvalue of delta/sub infinity/approx. = 30.50, in agreement with Eckmann and Wittwer's values of ..cap alpha.. = 0.0333831... and their conjectured estimate of delta/sub infinity/ less than or equal to 30.</description><subject>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics</subject><subject>ALGORITHMS</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>CONVERGENCE</subject><subject>EIGENVALUES</subject><subject>EQUATIONS</subject><subject>FUNCTIONALS</subject><subject>FUNCTIONS</subject><subject>ITERATIVE METHODS</subject><subject>MATHEMATICAL LOGIC</subject><subject>MATHEMATICAL MANIFOLDS</subject><subject>MATHEMATICAL SPACE</subject><subject>MATHEMATICS</subject><subject>MECHANICS</subject><subject>NUMERICAL SOLUTION</subject><subject>SIMULATION</subject><subject>SINGULARITY</subject><subject>SPACE</subject><subject>STATISTICAL MECHANICS</subject><subject>TOPOLOGY</subject><subject>TRANSFORMATIONS</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNpFkMFLwzAchYMoOKcX_4LgUagmaZM0xzmsEwZe9FyS9Jct0iazSQ_9792Y4Okd3uOD9yF0T8kTJUQ-vzSEElrVSlygBeWSFUrQ8hItCGGsqCTl1-gmpW9CiKoVX6DNKs3DIcfsLdahw5AShOx13884-bCbej3iFPsp-xgSjg7nPeAG_A6C0dOA4WfSp-4WXTndJ7j7yyX6al4_15ti-_H2vl5tC8u4yIWQjDlOlJTWgFZdZY3TIEvHGXdWiBoqw1wtmJOdM5QxC8xwSlxdKtPprlyihzM3puzbZH0Gu7cxBLC5PX49ksVx9Hge2TGmNIJrD6Mf9Di3lLQnUe2_qPIXCqhb8w</recordid><startdate>198806</startdate><enddate>198806</enddate><creator>Thompson, Colin J.</creator><creator>McGuire, J. B.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198806</creationdate><title>Asymptotic and essentially singular solutions of the Feigenbaum equation</title><author>Thompson, Colin J. ; McGuire, J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-6722f50977cbea9d4cbfae73f525fc668e4b2f862f7dfb122ce2b510f839bdad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics</topic><topic>ALGORITHMS</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>CONVERGENCE</topic><topic>EIGENVALUES</topic><topic>EQUATIONS</topic><topic>FUNCTIONALS</topic><topic>FUNCTIONS</topic><topic>ITERATIVE METHODS</topic><topic>MATHEMATICAL LOGIC</topic><topic>MATHEMATICAL MANIFOLDS</topic><topic>MATHEMATICAL SPACE</topic><topic>MATHEMATICS</topic><topic>MECHANICS</topic><topic>NUMERICAL SOLUTION</topic><topic>SIMULATION</topic><topic>SINGULARITY</topic><topic>SPACE</topic><topic>STATISTICAL MECHANICS</topic><topic>TOPOLOGY</topic><topic>TRANSFORMATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Colin J.</creatorcontrib><creatorcontrib>McGuire, J. B.</creatorcontrib><creatorcontrib>Univ. of California, Santa Barbara (USA)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Stat. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Colin J.</au><au>McGuire, J. B.</au><aucorp>Univ. of California, Santa Barbara (USA)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic and essentially singular solutions of the Feigenbaum equation</atitle><jtitle>J. Stat. Phys.; (United States)</jtitle><date>1988-06</date><risdate>1988</risdate><volume>51</volume><issue>5-6</issue><spage>991</spage><epage>1007</epage><pages>991-1007</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>For suitably defined large N, we express Feigenbaum's equation as a singular Schroder functional equation whose solution is obtained using a scaling ansatz. In the limit of infinite N certain self-consistency conditions on the scaled Schroder solution lead to an essentially singular solution of Feigenbaum's equation with a length scale factor of ..cap alpha.. approx. = 0.0333 and a limiting feigenvalue of delta/sub infinity/approx. = 30.50, in agreement with Eckmann and Wittwer's values of ..cap alpha.. = 0.0333831... and their conjectured estimate of delta/sub infinity/ less than or equal to 30.</abstract><cop>United States</cop><doi>10.1007/BF01014896</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof J. Stat. Phys.; (United States), 1988-06, Vol.51 (5-6), p.991-1007
issn 0022-4715
1572-9613
language eng
recordid cdi_crossref_primary_10_1007_BF01014896
source SpringerLink Journals - AutoHoldings
subjects 657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics
ALGORITHMS
ASYMPTOTIC SOLUTIONS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPUTERIZED SIMULATION
CONVERGENCE
EIGENVALUES
EQUATIONS
FUNCTIONALS
FUNCTIONS
ITERATIVE METHODS
MATHEMATICAL LOGIC
MATHEMATICAL MANIFOLDS
MATHEMATICAL SPACE
MATHEMATICS
MECHANICS
NUMERICAL SOLUTION
SIMULATION
SINGULARITY
SPACE
STATISTICAL MECHANICS
TOPOLOGY
TRANSFORMATIONS
title Asymptotic and essentially singular solutions of the Feigenbaum equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20and%20essentially%20singular%20solutions%20of%20the%20Feigenbaum%20equation&rft.jtitle=J.%20Stat.%20Phys.;%20(United%20States)&rft.au=Thompson,%20Colin%20J.&rft.aucorp=Univ.%20of%20California,%20Santa%20Barbara%20(USA)&rft.date=1988-06&rft.volume=51&rft.issue=5-6&rft.spage=991&rft.epage=1007&rft.pages=991-1007&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/BF01014896&rft_dat=%3Ccrossref_osti_%3E10_1007_BF01014896%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true