A soluble kinetic model for spinodal decomposition

We compare the two-dimensional vote model with approximate theories for spinodal decomposition. The cluster size distribution and the short-time dynamics of the voter model are studied by means of a Monte Carlo simulation. The time-dependent structure factors and the long-time scaling of the voter d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Stat. Phys.; (United States) 1988-10, Vol.53 (1-2), p.279-294
Hauptverfasser: SCHEUCHER, M, SPOHN, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue 1-2
container_start_page 279
container_title J. Stat. Phys.; (United States)
container_volume 53
creator SCHEUCHER, M
SPOHN, H
description We compare the two-dimensional vote model with approximate theories for spinodal decomposition. The cluster size distribution and the short-time dynamics of the voter model are studied by means of a Monte Carlo simulation. The time-dependent structure factors and the long-time scaling of the voter dynamics are known analytically.
doi_str_mv 10.1007/bf01011557
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01011557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>6834523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-24d8532729ec682092fa27119dd7daa6852da9f887d6382ec1d2906b2619af203</originalsourceid><addsrcrecordid>eNo90DtPwzAUBWALgUQpLPyCCDEhBe69rl9jqVpAqsQCc-T4IQxpHMVh4N9TVGA6y3fOcBi7RLhFAHXXRkBAFEIdsRkKRbWRyI_ZDICoXigUp-yslHcAMNqIGaNlVXL32Xah-kh9mJKrdtmHrop5rMqQ-uxtV_ng8m7IJU0p9-fsJNquhIvfnLPXzfpl9Vhvnx-eVstt7bjAqaaF14KTIhOc1ASGoiWFaLxX3lqpBXlrotbKS64pOPRkQLYk0dhIwOfs6rCby5Sa4tIU3JvLfR_c1EhShoTco5sDcmMuZQyxGca0s-NXg9D8XNLcb_4u2ePrAx5scbaLo-1dKv8NqflCEOffagNeFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A soluble kinetic model for spinodal decomposition</title><source>SpringerLink Journals</source><creator>SCHEUCHER, M ; SPOHN, H</creator><creatorcontrib>SCHEUCHER, M ; SPOHN, H ; Universitaet Muenchen (West Germany)</creatorcontrib><description>We compare the two-dimensional vote model with approximate theories for spinodal decomposition. The cluster size distribution and the short-time dynamics of the voter model are studied by means of a Monte Carlo simulation. The time-dependent structure factors and the long-time scaling of the voter dynamics are known analytically.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/bf01011557</identifier><identifier>CODEN: JSTPBS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics ; CHEMICAL REACTIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPUTERIZED SIMULATION ; Condensed matter: structure, mechanical and thermal properties ; CRYSTAL LATTICES ; CRYSTAL MODELS ; CRYSTAL STRUCTURE ; CUBIC LATTICES ; DECOMPOSITION ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; FLUIDS ; General studies of phase transitions ; ISING MODEL ; KINETICS ; LATTICE PARAMETERS ; LENNARD-JONES POTENTIAL ; MATHEMATICAL MODELS ; MECHANICS ; MONTE CARLO METHOD ; ORDER PARAMETERS ; ORDER-DISORDER TRANSFORMATIONS ; ORIENTATION ; PHASE TRANSFORMATIONS ; Physics ; POTENTIALS ; RANDOMNESS ; SCALING LAWS ; SIMULATION ; SPIN ORIENTATION ; STATISTICAL MECHANICS ; STOCHASTIC PROCESSES ; STRUCTURE FACTORS ; TWO-DIMENSIONAL CALCULATIONS</subject><ispartof>J. Stat. Phys.; (United States), 1988-10, Vol.53 (1-2), p.279-294</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-24d8532729ec682092fa27119dd7daa6852da9f887d6382ec1d2906b2619af203</citedby><cites>FETCH-LOGICAL-c351t-24d8532729ec682092fa27119dd7daa6852da9f887d6382ec1d2906b2619af203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6834523$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6279256$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>SCHEUCHER, M</creatorcontrib><creatorcontrib>SPOHN, H</creatorcontrib><creatorcontrib>Universitaet Muenchen (West Germany)</creatorcontrib><title>A soluble kinetic model for spinodal decomposition</title><title>J. Stat. Phys.; (United States)</title><description>We compare the two-dimensional vote model with approximate theories for spinodal decomposition. The cluster size distribution and the short-time dynamics of the voter model are studied by means of a Monte Carlo simulation. The time-dependent structure factors and the long-time scaling of the voter dynamics are known analytically.</description><subject>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics</subject><subject>CHEMICAL REACTIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>CRYSTAL LATTICES</subject><subject>CRYSTAL MODELS</subject><subject>CRYSTAL STRUCTURE</subject><subject>CUBIC LATTICES</subject><subject>DECOMPOSITION</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>FLUIDS</subject><subject>General studies of phase transitions</subject><subject>ISING MODEL</subject><subject>KINETICS</subject><subject>LATTICE PARAMETERS</subject><subject>LENNARD-JONES POTENTIAL</subject><subject>MATHEMATICAL MODELS</subject><subject>MECHANICS</subject><subject>MONTE CARLO METHOD</subject><subject>ORDER PARAMETERS</subject><subject>ORDER-DISORDER TRANSFORMATIONS</subject><subject>ORIENTATION</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physics</subject><subject>POTENTIALS</subject><subject>RANDOMNESS</subject><subject>SCALING LAWS</subject><subject>SIMULATION</subject><subject>SPIN ORIENTATION</subject><subject>STATISTICAL MECHANICS</subject><subject>STOCHASTIC PROCESSES</subject><subject>STRUCTURE FACTORS</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNo90DtPwzAUBWALgUQpLPyCCDEhBe69rl9jqVpAqsQCc-T4IQxpHMVh4N9TVGA6y3fOcBi7RLhFAHXXRkBAFEIdsRkKRbWRyI_ZDICoXigUp-yslHcAMNqIGaNlVXL32Xah-kh9mJKrdtmHrop5rMqQ-uxtV_ng8m7IJU0p9-fsJNquhIvfnLPXzfpl9Vhvnx-eVstt7bjAqaaF14KTIhOc1ASGoiWFaLxX3lqpBXlrotbKS64pOPRkQLYk0dhIwOfs6rCby5Sa4tIU3JvLfR_c1EhShoTco5sDcmMuZQyxGca0s-NXg9D8XNLcb_4u2ePrAx5scbaLo-1dKv8NqflCEOffagNeFw</recordid><startdate>19881001</startdate><enddate>19881001</enddate><creator>SCHEUCHER, M</creator><creator>SPOHN, H</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19881001</creationdate><title>A soluble kinetic model for spinodal decomposition</title><author>SCHEUCHER, M ; SPOHN, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-24d8532729ec682092fa27119dd7daa6852da9f887d6382ec1d2906b2619af203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics</topic><topic>CHEMICAL REACTIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>CRYSTAL LATTICES</topic><topic>CRYSTAL MODELS</topic><topic>CRYSTAL STRUCTURE</topic><topic>CUBIC LATTICES</topic><topic>DECOMPOSITION</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>FLUIDS</topic><topic>General studies of phase transitions</topic><topic>ISING MODEL</topic><topic>KINETICS</topic><topic>LATTICE PARAMETERS</topic><topic>LENNARD-JONES POTENTIAL</topic><topic>MATHEMATICAL MODELS</topic><topic>MECHANICS</topic><topic>MONTE CARLO METHOD</topic><topic>ORDER PARAMETERS</topic><topic>ORDER-DISORDER TRANSFORMATIONS</topic><topic>ORIENTATION</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physics</topic><topic>POTENTIALS</topic><topic>RANDOMNESS</topic><topic>SCALING LAWS</topic><topic>SIMULATION</topic><topic>SPIN ORIENTATION</topic><topic>STATISTICAL MECHANICS</topic><topic>STOCHASTIC PROCESSES</topic><topic>STRUCTURE FACTORS</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHEUCHER, M</creatorcontrib><creatorcontrib>SPOHN, H</creatorcontrib><creatorcontrib>Universitaet Muenchen (West Germany)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Stat. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHEUCHER, M</au><au>SPOHN, H</au><aucorp>Universitaet Muenchen (West Germany)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A soluble kinetic model for spinodal decomposition</atitle><jtitle>J. Stat. Phys.; (United States)</jtitle><date>1988-10-01</date><risdate>1988</risdate><volume>53</volume><issue>1-2</issue><spage>279</spage><epage>294</epage><pages>279-294</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><coden>JSTPBS</coden><abstract>We compare the two-dimensional vote model with approximate theories for spinodal decomposition. The cluster size distribution and the short-time dynamics of the voter model are studied by means of a Monte Carlo simulation. The time-dependent structure factors and the long-time scaling of the voter dynamics are known analytically.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/bf01011557</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof J. Stat. Phys.; (United States), 1988-10, Vol.53 (1-2), p.279-294
issn 0022-4715
1572-9613
language eng
recordid cdi_crossref_primary_10_1007_BF01011557
source SpringerLink Journals
subjects 657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics
CHEMICAL REACTIONS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPUTERIZED SIMULATION
Condensed matter: structure, mechanical and thermal properties
CRYSTAL LATTICES
CRYSTAL MODELS
CRYSTAL STRUCTURE
CUBIC LATTICES
DECOMPOSITION
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
FLUIDS
General studies of phase transitions
ISING MODEL
KINETICS
LATTICE PARAMETERS
LENNARD-JONES POTENTIAL
MATHEMATICAL MODELS
MECHANICS
MONTE CARLO METHOD
ORDER PARAMETERS
ORDER-DISORDER TRANSFORMATIONS
ORIENTATION
PHASE TRANSFORMATIONS
Physics
POTENTIALS
RANDOMNESS
SCALING LAWS
SIMULATION
SPIN ORIENTATION
STATISTICAL MECHANICS
STOCHASTIC PROCESSES
STRUCTURE FACTORS
TWO-DIMENSIONAL CALCULATIONS
title A soluble kinetic model for spinodal decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20soluble%20kinetic%20model%20for%20spinodal%20decomposition&rft.jtitle=J.%20Stat.%20Phys.;%20(United%20States)&rft.au=SCHEUCHER,%20M&rft.aucorp=Universitaet%20Muenchen%20(West%20Germany)&rft.date=1988-10-01&rft.volume=53&rft.issue=1-2&rft.spage=279&rft.epage=294&rft.pages=279-294&rft.issn=0022-4715&rft.eissn=1572-9613&rft.coden=JSTPBS&rft_id=info:doi/10.1007/bf01011557&rft_dat=%3Cpascalfrancis_osti_%3E6834523%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true