A soluble kinetic model for spinodal decomposition
We compare the two-dimensional vote model with approximate theories for spinodal decomposition. The cluster size distribution and the short-time dynamics of the voter model are studied by means of a Monte Carlo simulation. The time-dependent structure factors and the long-time scaling of the voter d...
Gespeichert in:
Veröffentlicht in: | J. Stat. Phys.; (United States) 1988-10, Vol.53 (1-2), p.279-294 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | 1-2 |
container_start_page | 279 |
container_title | J. Stat. Phys.; (United States) |
container_volume | 53 |
creator | SCHEUCHER, M SPOHN, H |
description | We compare the two-dimensional vote model with approximate theories for spinodal decomposition. The cluster size distribution and the short-time dynamics of the voter model are studied by means of a Monte Carlo simulation. The time-dependent structure factors and the long-time scaling of the voter dynamics are known analytically. |
doi_str_mv | 10.1007/bf01011557 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01011557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>6834523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-24d8532729ec682092fa27119dd7daa6852da9f887d6382ec1d2906b2619af203</originalsourceid><addsrcrecordid>eNo90DtPwzAUBWALgUQpLPyCCDEhBe69rl9jqVpAqsQCc-T4IQxpHMVh4N9TVGA6y3fOcBi7RLhFAHXXRkBAFEIdsRkKRbWRyI_ZDICoXigUp-yslHcAMNqIGaNlVXL32Xah-kh9mJKrdtmHrop5rMqQ-uxtV_ng8m7IJU0p9-fsJNquhIvfnLPXzfpl9Vhvnx-eVstt7bjAqaaF14KTIhOc1ASGoiWFaLxX3lqpBXlrotbKS64pOPRkQLYk0dhIwOfs6rCby5Sa4tIU3JvLfR_c1EhShoTco5sDcmMuZQyxGca0s-NXg9D8XNLcb_4u2ePrAx5scbaLo-1dKv8NqflCEOffagNeFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A soluble kinetic model for spinodal decomposition</title><source>SpringerLink Journals</source><creator>SCHEUCHER, M ; SPOHN, H</creator><creatorcontrib>SCHEUCHER, M ; SPOHN, H ; Universitaet Muenchen (West Germany)</creatorcontrib><description>We compare the two-dimensional vote model with approximate theories for spinodal decomposition. The cluster size distribution and the short-time dynamics of the voter model are studied by means of a Monte Carlo simulation. The time-dependent structure factors and the long-time scaling of the voter dynamics are known analytically.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/bf01011557</identifier><identifier>CODEN: JSTPBS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics ; CHEMICAL REACTIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPUTERIZED SIMULATION ; Condensed matter: structure, mechanical and thermal properties ; CRYSTAL LATTICES ; CRYSTAL MODELS ; CRYSTAL STRUCTURE ; CUBIC LATTICES ; DECOMPOSITION ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; FLUIDS ; General studies of phase transitions ; ISING MODEL ; KINETICS ; LATTICE PARAMETERS ; LENNARD-JONES POTENTIAL ; MATHEMATICAL MODELS ; MECHANICS ; MONTE CARLO METHOD ; ORDER PARAMETERS ; ORDER-DISORDER TRANSFORMATIONS ; ORIENTATION ; PHASE TRANSFORMATIONS ; Physics ; POTENTIALS ; RANDOMNESS ; SCALING LAWS ; SIMULATION ; SPIN ORIENTATION ; STATISTICAL MECHANICS ; STOCHASTIC PROCESSES ; STRUCTURE FACTORS ; TWO-DIMENSIONAL CALCULATIONS</subject><ispartof>J. Stat. Phys.; (United States), 1988-10, Vol.53 (1-2), p.279-294</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-24d8532729ec682092fa27119dd7daa6852da9f887d6382ec1d2906b2619af203</citedby><cites>FETCH-LOGICAL-c351t-24d8532729ec682092fa27119dd7daa6852da9f887d6382ec1d2906b2619af203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6834523$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6279256$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>SCHEUCHER, M</creatorcontrib><creatorcontrib>SPOHN, H</creatorcontrib><creatorcontrib>Universitaet Muenchen (West Germany)</creatorcontrib><title>A soluble kinetic model for spinodal decomposition</title><title>J. Stat. Phys.; (United States)</title><description>We compare the two-dimensional vote model with approximate theories for spinodal decomposition. The cluster size distribution and the short-time dynamics of the voter model are studied by means of a Monte Carlo simulation. The time-dependent structure factors and the long-time scaling of the voter dynamics are known analytically.</description><subject>657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics</subject><subject>CHEMICAL REACTIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>CRYSTAL LATTICES</subject><subject>CRYSTAL MODELS</subject><subject>CRYSTAL STRUCTURE</subject><subject>CUBIC LATTICES</subject><subject>DECOMPOSITION</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>FLUIDS</subject><subject>General studies of phase transitions</subject><subject>ISING MODEL</subject><subject>KINETICS</subject><subject>LATTICE PARAMETERS</subject><subject>LENNARD-JONES POTENTIAL</subject><subject>MATHEMATICAL MODELS</subject><subject>MECHANICS</subject><subject>MONTE CARLO METHOD</subject><subject>ORDER PARAMETERS</subject><subject>ORDER-DISORDER TRANSFORMATIONS</subject><subject>ORIENTATION</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physics</subject><subject>POTENTIALS</subject><subject>RANDOMNESS</subject><subject>SCALING LAWS</subject><subject>SIMULATION</subject><subject>SPIN ORIENTATION</subject><subject>STATISTICAL MECHANICS</subject><subject>STOCHASTIC PROCESSES</subject><subject>STRUCTURE FACTORS</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNo90DtPwzAUBWALgUQpLPyCCDEhBe69rl9jqVpAqsQCc-T4IQxpHMVh4N9TVGA6y3fOcBi7RLhFAHXXRkBAFEIdsRkKRbWRyI_ZDICoXigUp-yslHcAMNqIGaNlVXL32Xah-kh9mJKrdtmHrop5rMqQ-uxtV_ng8m7IJU0p9-fsJNquhIvfnLPXzfpl9Vhvnx-eVstt7bjAqaaF14KTIhOc1ASGoiWFaLxX3lqpBXlrotbKS64pOPRkQLYk0dhIwOfs6rCby5Sa4tIU3JvLfR_c1EhShoTco5sDcmMuZQyxGca0s-NXg9D8XNLcb_4u2ePrAx5scbaLo-1dKv8NqflCEOffagNeFw</recordid><startdate>19881001</startdate><enddate>19881001</enddate><creator>SCHEUCHER, M</creator><creator>SPOHN, H</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19881001</creationdate><title>A soluble kinetic model for spinodal decomposition</title><author>SCHEUCHER, M ; SPOHN, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-24d8532729ec682092fa27119dd7daa6852da9f887d6382ec1d2906b2619af203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics</topic><topic>CHEMICAL REACTIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>CRYSTAL LATTICES</topic><topic>CRYSTAL MODELS</topic><topic>CRYSTAL STRUCTURE</topic><topic>CUBIC LATTICES</topic><topic>DECOMPOSITION</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>FLUIDS</topic><topic>General studies of phase transitions</topic><topic>ISING MODEL</topic><topic>KINETICS</topic><topic>LATTICE PARAMETERS</topic><topic>LENNARD-JONES POTENTIAL</topic><topic>MATHEMATICAL MODELS</topic><topic>MECHANICS</topic><topic>MONTE CARLO METHOD</topic><topic>ORDER PARAMETERS</topic><topic>ORDER-DISORDER TRANSFORMATIONS</topic><topic>ORIENTATION</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physics</topic><topic>POTENTIALS</topic><topic>RANDOMNESS</topic><topic>SCALING LAWS</topic><topic>SIMULATION</topic><topic>SPIN ORIENTATION</topic><topic>STATISTICAL MECHANICS</topic><topic>STOCHASTIC PROCESSES</topic><topic>STRUCTURE FACTORS</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHEUCHER, M</creatorcontrib><creatorcontrib>SPOHN, H</creatorcontrib><creatorcontrib>Universitaet Muenchen (West Germany)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Stat. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHEUCHER, M</au><au>SPOHN, H</au><aucorp>Universitaet Muenchen (West Germany)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A soluble kinetic model for spinodal decomposition</atitle><jtitle>J. Stat. Phys.; (United States)</jtitle><date>1988-10-01</date><risdate>1988</risdate><volume>53</volume><issue>1-2</issue><spage>279</spage><epage>294</epage><pages>279-294</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><coden>JSTPBS</coden><abstract>We compare the two-dimensional vote model with approximate theories for spinodal decomposition. The cluster size distribution and the short-time dynamics of the voter model are studied by means of a Monte Carlo simulation. The time-dependent structure factors and the long-time scaling of the voter dynamics are known analytically.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/bf01011557</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | J. Stat. Phys.; (United States), 1988-10, Vol.53 (1-2), p.279-294 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_crossref_primary_10_1007_BF01011557 |
source | SpringerLink Journals |
subjects | 657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics CHEMICAL REACTIONS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COMPUTERIZED SIMULATION Condensed matter: structure, mechanical and thermal properties CRYSTAL LATTICES CRYSTAL MODELS CRYSTAL STRUCTURE CUBIC LATTICES DECOMPOSITION Equations of state, phase equilibria, and phase transitions Exact sciences and technology FLUIDS General studies of phase transitions ISING MODEL KINETICS LATTICE PARAMETERS LENNARD-JONES POTENTIAL MATHEMATICAL MODELS MECHANICS MONTE CARLO METHOD ORDER PARAMETERS ORDER-DISORDER TRANSFORMATIONS ORIENTATION PHASE TRANSFORMATIONS Physics POTENTIALS RANDOMNESS SCALING LAWS SIMULATION SPIN ORIENTATION STATISTICAL MECHANICS STOCHASTIC PROCESSES STRUCTURE FACTORS TWO-DIMENSIONAL CALCULATIONS |
title | A soluble kinetic model for spinodal decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20soluble%20kinetic%20model%20for%20spinodal%20decomposition&rft.jtitle=J.%20Stat.%20Phys.;%20(United%20States)&rft.au=SCHEUCHER,%20M&rft.aucorp=Universitaet%20Muenchen%20(West%20Germany)&rft.date=1988-10-01&rft.volume=53&rft.issue=1-2&rft.spage=279&rft.epage=294&rft.pages=279-294&rft.issn=0022-4715&rft.eissn=1572-9613&rft.coden=JSTPBS&rft_id=info:doi/10.1007/bf01011557&rft_dat=%3Cpascalfrancis_osti_%3E6834523%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |