Analogy between the Lorenz strange attractor and a bistable stochastic oscillator

The relation between the aperiodic solution of the Lorenz model and that of a stochastic anharmonic oscillator is explored. The stochastic oscillator is constructed by replacing Z(t) in the Lorenz model by a stochastic variable zeta(t) of specified statistics. The resulting system is of course not i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Stat. Phys.; (United States) 1987, Vol.46 (1-2), p.119-133
Hauptverfasser: KOTTALAM, J, WEST, B. J, LINDENBERG, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1-2
container_start_page 119
container_title J. Stat. Phys.; (United States)
container_volume 46
creator KOTTALAM, J
WEST, B. J
LINDENBERG, K
description The relation between the aperiodic solution of the Lorenz model and that of a stochastic anharmonic oscillator is explored. The stochastic oscillator is constructed by replacing Z(t) in the Lorenz model by a stochastic variable zeta(t) of specified statistics. The resulting system is of course not isomorphic to the Lorenz model, but does share with it a number of statistical properties. Thus, within the confines of these measures the two systems are physically very similar.
doi_str_mv 10.1007/BF01010335
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01010335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7458179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-7d64c8bf49f53c95684548435a8cccd8295e42914d3a734f78829bb330eec6813</originalsourceid><addsrcrecordid>eNpFkMFKBDEMhosouK5efIIinoTRdtpO2-MqrgoLIuh56GQyuyNju7QFWZ_eyoqSQ0L4kj_5CTnn7Jozpm9ul4yXEEIdkBlXuq5sw8UhmTFW15XUXB2Tk5TeGWPWWDUjLwvvprDe0Q7zJ6KneYN0FSL6L5pydH6N1OVSQA6ROt9TR7sxZddNWIAAG5fyCDQkGKfJFeiUHA1uSnj2m-fkbXn_evdYrZ4fnu4Wqwpqo3Ol-0aC6QZpByXAqsZIJY0UyhkA6E1tFcractkLp4UctCmtrhOCIUJjuJiTi_3eUA5oi3xG2EDwHiG3jeBaWVWgqz0EMaQUcWi3cfxwcddy1v441v47VuDLPbx1Cdw0lO9hTH8TWirDtRXf5whpyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analogy between the Lorenz strange attractor and a bistable stochastic oscillator</title><source>SpringerLink Journals</source><creator>KOTTALAM, J ; WEST, B. J ; LINDENBERG, K</creator><creatorcontrib>KOTTALAM, J ; WEST, B. J ; LINDENBERG, K ; Univ. of California, San Diego, La Jolla</creatorcontrib><description>The relation between the aperiodic solution of the Lorenz model and that of a stochastic anharmonic oscillator is explored. The stochastic oscillator is constructed by replacing Z(t) in the Lorenz model by a stochastic variable zeta(t) of specified statistics. The resulting system is of course not isomorphic to the Lorenz model, but does share with it a number of statistical properties. Thus, within the confines of these measures the two systems are physically very similar.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/BF01010335</identifier><identifier>CODEN: JSTPBS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics ; ANHARMONIC OSCILLATORS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONVECTION ; DEGREES OF FREEDOM ; DIFFERENTIAL EQUATIONS ; ELECTRONIC EQUIPMENT ; ENERGY SPECTRA ; ENERGY TRANSFER ; EQUATIONS ; Exact sciences and technology ; FLUCTUATIONS ; FLUID MECHANICS ; FLUIDS ; FOKKER-PLANCK EQUATION ; Geometry, differential geometry, and topology ; HEAT TRANSFER ; HYDRODYNAMICS ; INVARIANCE PRINCIPLES ; MASS TRANSFER ; MATHEMATICAL MANIFOLDS ; Mathematical methods in physics ; MATHEMATICAL MODELS ; MATHEMATICAL SPACE ; MECHANICS ; NONLINEAR PROBLEMS ; OSCILLATIONS ; OSCILLATORS ; PARTIAL DIFFERENTIAL EQUATIONS ; PHASE SPACE ; Physics ; PRANDTL NUMBER ; PROBABILITY ; SPACE ; SPECTRA ; STATISTICAL MECHANICS ; STEADY-STATE CONDITIONS ; STOCHASTIC PROCESSES ; SYMMETRY ; THERMODYNAMICS ; TRAJECTORIES ; TRANSPORT THEORY ; VARIATIONS</subject><ispartof>J. Stat. Phys.; (United States), 1987, Vol.46 (1-2), p.119-133</ispartof><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-7d64c8bf49f53c95684548435a8cccd8295e42914d3a734f78829bb330eec6813</citedby><cites>FETCH-LOGICAL-c287t-7d64c8bf49f53c95684548435a8cccd8295e42914d3a734f78829bb330eec6813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7458179$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6317595$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>KOTTALAM, J</creatorcontrib><creatorcontrib>WEST, B. J</creatorcontrib><creatorcontrib>LINDENBERG, K</creatorcontrib><creatorcontrib>Univ. of California, San Diego, La Jolla</creatorcontrib><title>Analogy between the Lorenz strange attractor and a bistable stochastic oscillator</title><title>J. Stat. Phys.; (United States)</title><description>The relation between the aperiodic solution of the Lorenz model and that of a stochastic anharmonic oscillator is explored. The stochastic oscillator is constructed by replacing Z(t) in the Lorenz model by a stochastic variable zeta(t) of specified statistics. The resulting system is of course not isomorphic to the Lorenz model, but does share with it a number of statistical properties. Thus, within the confines of these measures the two systems are physically very similar.</description><subject>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics</subject><subject>ANHARMONIC OSCILLATORS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONVECTION</subject><subject>DEGREES OF FREEDOM</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELECTRONIC EQUIPMENT</subject><subject>ENERGY SPECTRA</subject><subject>ENERGY TRANSFER</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FLUCTUATIONS</subject><subject>FLUID MECHANICS</subject><subject>FLUIDS</subject><subject>FOKKER-PLANCK EQUATION</subject><subject>Geometry, differential geometry, and topology</subject><subject>HEAT TRANSFER</subject><subject>HYDRODYNAMICS</subject><subject>INVARIANCE PRINCIPLES</subject><subject>MASS TRANSFER</subject><subject>MATHEMATICAL MANIFOLDS</subject><subject>Mathematical methods in physics</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL SPACE</subject><subject>MECHANICS</subject><subject>NONLINEAR PROBLEMS</subject><subject>OSCILLATIONS</subject><subject>OSCILLATORS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PHASE SPACE</subject><subject>Physics</subject><subject>PRANDTL NUMBER</subject><subject>PROBABILITY</subject><subject>SPACE</subject><subject>SPECTRA</subject><subject>STATISTICAL MECHANICS</subject><subject>STEADY-STATE CONDITIONS</subject><subject>STOCHASTIC PROCESSES</subject><subject>SYMMETRY</subject><subject>THERMODYNAMICS</subject><subject>TRAJECTORIES</subject><subject>TRANSPORT THEORY</subject><subject>VARIATIONS</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKBDEMhosouK5efIIinoTRdtpO2-MqrgoLIuh56GQyuyNju7QFWZ_eyoqSQ0L4kj_5CTnn7Jozpm9ul4yXEEIdkBlXuq5sw8UhmTFW15XUXB2Tk5TeGWPWWDUjLwvvprDe0Q7zJ6KneYN0FSL6L5pydH6N1OVSQA6ROt9TR7sxZddNWIAAG5fyCDQkGKfJFeiUHA1uSnj2m-fkbXn_evdYrZ4fnu4Wqwpqo3Ol-0aC6QZpByXAqsZIJY0UyhkA6E1tFcractkLp4UctCmtrhOCIUJjuJiTi_3eUA5oi3xG2EDwHiG3jeBaWVWgqz0EMaQUcWi3cfxwcddy1v441v47VuDLPbx1Cdw0lO9hTH8TWirDtRXf5whpyg</recordid><startdate>1987</startdate><enddate>1987</enddate><creator>KOTTALAM, J</creator><creator>WEST, B. J</creator><creator>LINDENBERG, K</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>1987</creationdate><title>Analogy between the Lorenz strange attractor and a bistable stochastic oscillator</title><author>KOTTALAM, J ; WEST, B. J ; LINDENBERG, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-7d64c8bf49f53c95684548435a8cccd8295e42914d3a734f78829bb330eec6813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>657002 - Theoretical &amp; Mathematical Physics- Classical &amp; Quantum Mechanics</topic><topic>ANHARMONIC OSCILLATORS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONVECTION</topic><topic>DEGREES OF FREEDOM</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELECTRONIC EQUIPMENT</topic><topic>ENERGY SPECTRA</topic><topic>ENERGY TRANSFER</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FLUCTUATIONS</topic><topic>FLUID MECHANICS</topic><topic>FLUIDS</topic><topic>FOKKER-PLANCK EQUATION</topic><topic>Geometry, differential geometry, and topology</topic><topic>HEAT TRANSFER</topic><topic>HYDRODYNAMICS</topic><topic>INVARIANCE PRINCIPLES</topic><topic>MASS TRANSFER</topic><topic>MATHEMATICAL MANIFOLDS</topic><topic>Mathematical methods in physics</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL SPACE</topic><topic>MECHANICS</topic><topic>NONLINEAR PROBLEMS</topic><topic>OSCILLATIONS</topic><topic>OSCILLATORS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PHASE SPACE</topic><topic>Physics</topic><topic>PRANDTL NUMBER</topic><topic>PROBABILITY</topic><topic>SPACE</topic><topic>SPECTRA</topic><topic>STATISTICAL MECHANICS</topic><topic>STEADY-STATE CONDITIONS</topic><topic>STOCHASTIC PROCESSES</topic><topic>SYMMETRY</topic><topic>THERMODYNAMICS</topic><topic>TRAJECTORIES</topic><topic>TRANSPORT THEORY</topic><topic>VARIATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KOTTALAM, J</creatorcontrib><creatorcontrib>WEST, B. J</creatorcontrib><creatorcontrib>LINDENBERG, K</creatorcontrib><creatorcontrib>Univ. of California, San Diego, La Jolla</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Stat. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KOTTALAM, J</au><au>WEST, B. J</au><au>LINDENBERG, K</au><aucorp>Univ. of California, San Diego, La Jolla</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analogy between the Lorenz strange attractor and a bistable stochastic oscillator</atitle><jtitle>J. Stat. Phys.; (United States)</jtitle><date>1987</date><risdate>1987</risdate><volume>46</volume><issue>1-2</issue><spage>119</spage><epage>133</epage><pages>119-133</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><coden>JSTPBS</coden><abstract>The relation between the aperiodic solution of the Lorenz model and that of a stochastic anharmonic oscillator is explored. The stochastic oscillator is constructed by replacing Z(t) in the Lorenz model by a stochastic variable zeta(t) of specified statistics. The resulting system is of course not isomorphic to the Lorenz model, but does share with it a number of statistical properties. Thus, within the confines of these measures the two systems are physically very similar.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF01010335</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof J. Stat. Phys.; (United States), 1987, Vol.46 (1-2), p.119-133
issn 0022-4715
1572-9613
language eng
recordid cdi_crossref_primary_10_1007_BF01010335
source SpringerLink Journals
subjects 657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics
ANHARMONIC OSCILLATORS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONVECTION
DEGREES OF FREEDOM
DIFFERENTIAL EQUATIONS
ELECTRONIC EQUIPMENT
ENERGY SPECTRA
ENERGY TRANSFER
EQUATIONS
Exact sciences and technology
FLUCTUATIONS
FLUID MECHANICS
FLUIDS
FOKKER-PLANCK EQUATION
Geometry, differential geometry, and topology
HEAT TRANSFER
HYDRODYNAMICS
INVARIANCE PRINCIPLES
MASS TRANSFER
MATHEMATICAL MANIFOLDS
Mathematical methods in physics
MATHEMATICAL MODELS
MATHEMATICAL SPACE
MECHANICS
NONLINEAR PROBLEMS
OSCILLATIONS
OSCILLATORS
PARTIAL DIFFERENTIAL EQUATIONS
PHASE SPACE
Physics
PRANDTL NUMBER
PROBABILITY
SPACE
SPECTRA
STATISTICAL MECHANICS
STEADY-STATE CONDITIONS
STOCHASTIC PROCESSES
SYMMETRY
THERMODYNAMICS
TRAJECTORIES
TRANSPORT THEORY
VARIATIONS
title Analogy between the Lorenz strange attractor and a bistable stochastic oscillator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analogy%20between%20the%20Lorenz%20strange%20attractor%20and%20a%20bistable%20stochastic%20oscillator&rft.jtitle=J.%20Stat.%20Phys.;%20(United%20States)&rft.au=KOTTALAM,%20J&rft.aucorp=Univ.%20of%20California,%20San%20Diego,%20La%20Jolla&rft.date=1987&rft.volume=46&rft.issue=1-2&rft.spage=119&rft.epage=133&rft.pages=119-133&rft.issn=0022-4715&rft.eissn=1572-9613&rft.coden=JSTPBS&rft_id=info:doi/10.1007/BF01010335&rft_dat=%3Cpascalfrancis_osti_%3E7458179%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true