Analogy between the Lorenz strange attractor and a bistable stochastic oscillator
The relation between the aperiodic solution of the Lorenz model and that of a stochastic anharmonic oscillator is explored. The stochastic oscillator is constructed by replacing Z(t) in the Lorenz model by a stochastic variable zeta(t) of specified statistics. The resulting system is of course not i...
Gespeichert in:
Veröffentlicht in: | J. Stat. Phys.; (United States) 1987, Vol.46 (1-2), p.119-133 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | 1-2 |
container_start_page | 119 |
container_title | J. Stat. Phys.; (United States) |
container_volume | 46 |
creator | KOTTALAM, J WEST, B. J LINDENBERG, K |
description | The relation between the aperiodic solution of the Lorenz model and that of a stochastic anharmonic oscillator is explored. The stochastic oscillator is constructed by replacing Z(t) in the Lorenz model by a stochastic variable zeta(t) of specified statistics. The resulting system is of course not isomorphic to the Lorenz model, but does share with it a number of statistical properties. Thus, within the confines of these measures the two systems are physically very similar. |
doi_str_mv | 10.1007/BF01010335 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01010335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7458179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-7d64c8bf49f53c95684548435a8cccd8295e42914d3a734f78829bb330eec6813</originalsourceid><addsrcrecordid>eNpFkMFKBDEMhosouK5efIIinoTRdtpO2-MqrgoLIuh56GQyuyNju7QFWZ_eyoqSQ0L4kj_5CTnn7Jozpm9ul4yXEEIdkBlXuq5sw8UhmTFW15XUXB2Tk5TeGWPWWDUjLwvvprDe0Q7zJ6KneYN0FSL6L5pydH6N1OVSQA6ROt9TR7sxZddNWIAAG5fyCDQkGKfJFeiUHA1uSnj2m-fkbXn_evdYrZ4fnu4Wqwpqo3Ol-0aC6QZpByXAqsZIJY0UyhkA6E1tFcractkLp4UctCmtrhOCIUJjuJiTi_3eUA5oi3xG2EDwHiG3jeBaWVWgqz0EMaQUcWi3cfxwcddy1v441v47VuDLPbx1Cdw0lO9hTH8TWirDtRXf5whpyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analogy between the Lorenz strange attractor and a bistable stochastic oscillator</title><source>SpringerLink Journals</source><creator>KOTTALAM, J ; WEST, B. J ; LINDENBERG, K</creator><creatorcontrib>KOTTALAM, J ; WEST, B. J ; LINDENBERG, K ; Univ. of California, San Diego, La Jolla</creatorcontrib><description>The relation between the aperiodic solution of the Lorenz model and that of a stochastic anharmonic oscillator is explored. The stochastic oscillator is constructed by replacing Z(t) in the Lorenz model by a stochastic variable zeta(t) of specified statistics. The resulting system is of course not isomorphic to the Lorenz model, but does share with it a number of statistical properties. Thus, within the confines of these measures the two systems are physically very similar.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/BF01010335</identifier><identifier>CODEN: JSTPBS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics ; ANHARMONIC OSCILLATORS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONVECTION ; DEGREES OF FREEDOM ; DIFFERENTIAL EQUATIONS ; ELECTRONIC EQUIPMENT ; ENERGY SPECTRA ; ENERGY TRANSFER ; EQUATIONS ; Exact sciences and technology ; FLUCTUATIONS ; FLUID MECHANICS ; FLUIDS ; FOKKER-PLANCK EQUATION ; Geometry, differential geometry, and topology ; HEAT TRANSFER ; HYDRODYNAMICS ; INVARIANCE PRINCIPLES ; MASS TRANSFER ; MATHEMATICAL MANIFOLDS ; Mathematical methods in physics ; MATHEMATICAL MODELS ; MATHEMATICAL SPACE ; MECHANICS ; NONLINEAR PROBLEMS ; OSCILLATIONS ; OSCILLATORS ; PARTIAL DIFFERENTIAL EQUATIONS ; PHASE SPACE ; Physics ; PRANDTL NUMBER ; PROBABILITY ; SPACE ; SPECTRA ; STATISTICAL MECHANICS ; STEADY-STATE CONDITIONS ; STOCHASTIC PROCESSES ; SYMMETRY ; THERMODYNAMICS ; TRAJECTORIES ; TRANSPORT THEORY ; VARIATIONS</subject><ispartof>J. Stat. Phys.; (United States), 1987, Vol.46 (1-2), p.119-133</ispartof><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-7d64c8bf49f53c95684548435a8cccd8295e42914d3a734f78829bb330eec6813</citedby><cites>FETCH-LOGICAL-c287t-7d64c8bf49f53c95684548435a8cccd8295e42914d3a734f78829bb330eec6813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7458179$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6317595$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>KOTTALAM, J</creatorcontrib><creatorcontrib>WEST, B. J</creatorcontrib><creatorcontrib>LINDENBERG, K</creatorcontrib><creatorcontrib>Univ. of California, San Diego, La Jolla</creatorcontrib><title>Analogy between the Lorenz strange attractor and a bistable stochastic oscillator</title><title>J. Stat. Phys.; (United States)</title><description>The relation between the aperiodic solution of the Lorenz model and that of a stochastic anharmonic oscillator is explored. The stochastic oscillator is constructed by replacing Z(t) in the Lorenz model by a stochastic variable zeta(t) of specified statistics. The resulting system is of course not isomorphic to the Lorenz model, but does share with it a number of statistical properties. Thus, within the confines of these measures the two systems are physically very similar.</description><subject>657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics</subject><subject>ANHARMONIC OSCILLATORS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONVECTION</subject><subject>DEGREES OF FREEDOM</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELECTRONIC EQUIPMENT</subject><subject>ENERGY SPECTRA</subject><subject>ENERGY TRANSFER</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FLUCTUATIONS</subject><subject>FLUID MECHANICS</subject><subject>FLUIDS</subject><subject>FOKKER-PLANCK EQUATION</subject><subject>Geometry, differential geometry, and topology</subject><subject>HEAT TRANSFER</subject><subject>HYDRODYNAMICS</subject><subject>INVARIANCE PRINCIPLES</subject><subject>MASS TRANSFER</subject><subject>MATHEMATICAL MANIFOLDS</subject><subject>Mathematical methods in physics</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL SPACE</subject><subject>MECHANICS</subject><subject>NONLINEAR PROBLEMS</subject><subject>OSCILLATIONS</subject><subject>OSCILLATORS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PHASE SPACE</subject><subject>Physics</subject><subject>PRANDTL NUMBER</subject><subject>PROBABILITY</subject><subject>SPACE</subject><subject>SPECTRA</subject><subject>STATISTICAL MECHANICS</subject><subject>STEADY-STATE CONDITIONS</subject><subject>STOCHASTIC PROCESSES</subject><subject>SYMMETRY</subject><subject>THERMODYNAMICS</subject><subject>TRAJECTORIES</subject><subject>TRANSPORT THEORY</subject><subject>VARIATIONS</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKBDEMhosouK5efIIinoTRdtpO2-MqrgoLIuh56GQyuyNju7QFWZ_eyoqSQ0L4kj_5CTnn7Jozpm9ul4yXEEIdkBlXuq5sw8UhmTFW15XUXB2Tk5TeGWPWWDUjLwvvprDe0Q7zJ6KneYN0FSL6L5pydH6N1OVSQA6ROt9TR7sxZddNWIAAG5fyCDQkGKfJFeiUHA1uSnj2m-fkbXn_evdYrZ4fnu4Wqwpqo3Ol-0aC6QZpByXAqsZIJY0UyhkA6E1tFcractkLp4UctCmtrhOCIUJjuJiTi_3eUA5oi3xG2EDwHiG3jeBaWVWgqz0EMaQUcWi3cfxwcddy1v441v47VuDLPbx1Cdw0lO9hTH8TWirDtRXf5whpyg</recordid><startdate>1987</startdate><enddate>1987</enddate><creator>KOTTALAM, J</creator><creator>WEST, B. J</creator><creator>LINDENBERG, K</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>1987</creationdate><title>Analogy between the Lorenz strange attractor and a bistable stochastic oscillator</title><author>KOTTALAM, J ; WEST, B. J ; LINDENBERG, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-7d64c8bf49f53c95684548435a8cccd8295e42914d3a734f78829bb330eec6813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics</topic><topic>ANHARMONIC OSCILLATORS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONVECTION</topic><topic>DEGREES OF FREEDOM</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELECTRONIC EQUIPMENT</topic><topic>ENERGY SPECTRA</topic><topic>ENERGY TRANSFER</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FLUCTUATIONS</topic><topic>FLUID MECHANICS</topic><topic>FLUIDS</topic><topic>FOKKER-PLANCK EQUATION</topic><topic>Geometry, differential geometry, and topology</topic><topic>HEAT TRANSFER</topic><topic>HYDRODYNAMICS</topic><topic>INVARIANCE PRINCIPLES</topic><topic>MASS TRANSFER</topic><topic>MATHEMATICAL MANIFOLDS</topic><topic>Mathematical methods in physics</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL SPACE</topic><topic>MECHANICS</topic><topic>NONLINEAR PROBLEMS</topic><topic>OSCILLATIONS</topic><topic>OSCILLATORS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PHASE SPACE</topic><topic>Physics</topic><topic>PRANDTL NUMBER</topic><topic>PROBABILITY</topic><topic>SPACE</topic><topic>SPECTRA</topic><topic>STATISTICAL MECHANICS</topic><topic>STEADY-STATE CONDITIONS</topic><topic>STOCHASTIC PROCESSES</topic><topic>SYMMETRY</topic><topic>THERMODYNAMICS</topic><topic>TRAJECTORIES</topic><topic>TRANSPORT THEORY</topic><topic>VARIATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KOTTALAM, J</creatorcontrib><creatorcontrib>WEST, B. J</creatorcontrib><creatorcontrib>LINDENBERG, K</creatorcontrib><creatorcontrib>Univ. of California, San Diego, La Jolla</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Stat. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KOTTALAM, J</au><au>WEST, B. J</au><au>LINDENBERG, K</au><aucorp>Univ. of California, San Diego, La Jolla</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analogy between the Lorenz strange attractor and a bistable stochastic oscillator</atitle><jtitle>J. Stat. Phys.; (United States)</jtitle><date>1987</date><risdate>1987</risdate><volume>46</volume><issue>1-2</issue><spage>119</spage><epage>133</epage><pages>119-133</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><coden>JSTPBS</coden><abstract>The relation between the aperiodic solution of the Lorenz model and that of a stochastic anharmonic oscillator is explored. The stochastic oscillator is constructed by replacing Z(t) in the Lorenz model by a stochastic variable zeta(t) of specified statistics. The resulting system is of course not isomorphic to the Lorenz model, but does share with it a number of statistical properties. Thus, within the confines of these measures the two systems are physically very similar.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF01010335</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | J. Stat. Phys.; (United States), 1987, Vol.46 (1-2), p.119-133 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_crossref_primary_10_1007_BF01010335 |
source | SpringerLink Journals |
subjects | 657002 - Theoretical & Mathematical Physics- Classical & Quantum Mechanics ANHARMONIC OSCILLATORS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONVECTION DEGREES OF FREEDOM DIFFERENTIAL EQUATIONS ELECTRONIC EQUIPMENT ENERGY SPECTRA ENERGY TRANSFER EQUATIONS Exact sciences and technology FLUCTUATIONS FLUID MECHANICS FLUIDS FOKKER-PLANCK EQUATION Geometry, differential geometry, and topology HEAT TRANSFER HYDRODYNAMICS INVARIANCE PRINCIPLES MASS TRANSFER MATHEMATICAL MANIFOLDS Mathematical methods in physics MATHEMATICAL MODELS MATHEMATICAL SPACE MECHANICS NONLINEAR PROBLEMS OSCILLATIONS OSCILLATORS PARTIAL DIFFERENTIAL EQUATIONS PHASE SPACE Physics PRANDTL NUMBER PROBABILITY SPACE SPECTRA STATISTICAL MECHANICS STEADY-STATE CONDITIONS STOCHASTIC PROCESSES SYMMETRY THERMODYNAMICS TRAJECTORIES TRANSPORT THEORY VARIATIONS |
title | Analogy between the Lorenz strange attractor and a bistable stochastic oscillator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analogy%20between%20the%20Lorenz%20strange%20attractor%20and%20a%20bistable%20stochastic%20oscillator&rft.jtitle=J.%20Stat.%20Phys.;%20(United%20States)&rft.au=KOTTALAM,%20J&rft.aucorp=Univ.%20of%20California,%20San%20Diego,%20La%20Jolla&rft.date=1987&rft.volume=46&rft.issue=1-2&rft.spage=119&rft.epage=133&rft.pages=119-133&rft.issn=0022-4715&rft.eissn=1572-9613&rft.coden=JSTPBS&rft_id=info:doi/10.1007/BF01010335&rft_dat=%3Cpascalfrancis_osti_%3E7458179%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |