Relativistic orbital perturbations in a weak gravitational field

With the general third-order equations of motion for a test particle, Synge's third-order orbital equations at great distance in the weak gravitational field generated by a massive body are derived. The body has an axis of symmetry around which is rotating steadily. The results found for the ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Int. J. Theor. Phys.; (United States) 1986-02, Vol.25 (2), p.175-193
Hauptverfasser: GAMBI, J. M, SAN MIGUEL, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 2
container_start_page 175
container_title Int. J. Theor. Phys.; (United States)
container_volume 25
creator GAMBI, J. M
SAN MIGUEL, A
description With the general third-order equations of motion for a test particle, Synge's third-order orbital equations at great distance in the weak gravitational field generated by a massive body are derived. The body has an axis of symmetry around which is rotating steadily. The results found for the advance of perihelion using first integrals of motion for the general equations show that the effect due to the inner stress of the body can be derived for orbits with inclination with respect to the equator of the body. Then, by means of the variation of the parameters method, we obtain with the equations at great distance the corresponding perturbations on the elements of such orbits in the field considered. These perturbations result to be of second order with regard to the mass of the body (the basis of the approximation).
doi_str_mv 10.1007/BF00677705
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF00677705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7898438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-9d76e0e9ac158f7b1e391af021de1cdeda21f3bd30f32530dafd1f3c4d19db023</originalsourceid><addsrcrecordid>eNpF0E1LxDAQBuAgCq6rF39BEU9CdZK0TXJTF1eFBUH0XKb50GhtSxJX_PdmWdHTwMwzw_ASckzhnAKIi-slQCOEgHqHzGgtWKlqUe-SGQCDUohK7pODGN8AQEElZ-Ty0faY_NrH5HUxhs4n7IvJhvQZujwYh1j4ocDiy-J78RJwncGmnZXztjeHZM9hH-3Rb52T5-XN0-KuXD3c3i-uVqVmUqRSGdFYsAo1raUTHbVcUXTAqLFUG2uQUcc7w8FxVnMw6Exu6MpQZTpgfE5OtnfH_GkbtU9Wv-pxGKxOraANU4xndLZFOowxBuvaKfgPDN8thXYTUPsfUManWzxh1Ni7gIP28W9DSCUrLvkPI11lYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Relativistic orbital perturbations in a weak gravitational field</title><source>SpringerLink Journals - AutoHoldings</source><creator>GAMBI, J. M ; SAN MIGUEL, A</creator><creatorcontrib>GAMBI, J. M ; SAN MIGUEL, A ; Univ. of Valladolid, Valladolid</creatorcontrib><description>With the general third-order equations of motion for a test particle, Synge's third-order orbital equations at great distance in the weak gravitational field generated by a massive body are derived. The body has an axis of symmetry around which is rotating steadily. The results found for the advance of perihelion using first integrals of motion for the general equations show that the effect due to the inner stress of the body can be derived for orbits with inclination with respect to the equator of the body. Then, by means of the variation of the parameters method, we obtain with the equations at great distance the corresponding perturbations on the elements of such orbits in the field considered. These perturbations result to be of second order with regard to the mass of the body (the basis of the approximation).</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/BF00677705</identifier><identifier>CODEN: IJTPBM</identifier><language>eng</language><publisher>New York, NY: Kluwer/Plenum</publisher><subject>640106 - Astrophysics &amp; Cosmology- Cosmology ; ANGULAR MOMENTUM OPERATORS ; AXIAL SYMMETRY ; CARTESIAN COORDINATES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical general relativity ; COORDINATES ; COSMOLOGICAL MODELS ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; EQUATIONS OF MOTION ; Exact sciences and technology ; FIELD THEORIES ; GAUGE INVARIANCE ; General relativity and gravitation ; GENERAL RELATIVITY THEORY ; GRAVITATIONAL FIELDS ; INVARIANCE PRINCIPLES ; MATHEMATICAL MODELS ; MATHEMATICAL OPERATORS ; ORBITS ; PARTIAL DIFFERENTIAL EQUATIONS ; PARTICLE MODELS ; PERTURBATION THEORY ; Physics ; QUANTUM OPERATORS ; SPACE-TIME ; SYMMETRY</subject><ispartof>Int. J. Theor. Phys.; (United States), 1986-02, Vol.25 (2), p.175-193</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-9d76e0e9ac158f7b1e391af021de1cdeda21f3bd30f32530dafd1f3c4d19db023</citedby><cites>FETCH-LOGICAL-c287t-9d76e0e9ac158f7b1e391af021de1cdeda21f3bd30f32530dafd1f3c4d19db023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7898438$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7162923$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>GAMBI, J. M</creatorcontrib><creatorcontrib>SAN MIGUEL, A</creatorcontrib><creatorcontrib>Univ. of Valladolid, Valladolid</creatorcontrib><title>Relativistic orbital perturbations in a weak gravitational field</title><title>Int. J. Theor. Phys.; (United States)</title><description>With the general third-order equations of motion for a test particle, Synge's third-order orbital equations at great distance in the weak gravitational field generated by a massive body are derived. The body has an axis of symmetry around which is rotating steadily. The results found for the advance of perihelion using first integrals of motion for the general equations show that the effect due to the inner stress of the body can be derived for orbits with inclination with respect to the equator of the body. Then, by means of the variation of the parameters method, we obtain with the equations at great distance the corresponding perturbations on the elements of such orbits in the field considered. These perturbations result to be of second order with regard to the mass of the body (the basis of the approximation).</description><subject>640106 - Astrophysics &amp; Cosmology- Cosmology</subject><subject>ANGULAR MOMENTUM OPERATORS</subject><subject>AXIAL SYMMETRY</subject><subject>CARTESIAN COORDINATES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical general relativity</subject><subject>COORDINATES</subject><subject>COSMOLOGICAL MODELS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>Exact sciences and technology</subject><subject>FIELD THEORIES</subject><subject>GAUGE INVARIANCE</subject><subject>General relativity and gravitation</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>GRAVITATIONAL FIELDS</subject><subject>INVARIANCE PRINCIPLES</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>ORBITS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PARTICLE MODELS</subject><subject>PERTURBATION THEORY</subject><subject>Physics</subject><subject>QUANTUM OPERATORS</subject><subject>SPACE-TIME</subject><subject>SYMMETRY</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LxDAQBuAgCq6rF39BEU9CdZK0TXJTF1eFBUH0XKb50GhtSxJX_PdmWdHTwMwzw_ASckzhnAKIi-slQCOEgHqHzGgtWKlqUe-SGQCDUohK7pODGN8AQEElZ-Ty0faY_NrH5HUxhs4n7IvJhvQZujwYh1j4ocDiy-J78RJwncGmnZXztjeHZM9hH-3Rb52T5-XN0-KuXD3c3i-uVqVmUqRSGdFYsAo1raUTHbVcUXTAqLFUG2uQUcc7w8FxVnMw6Exu6MpQZTpgfE5OtnfH_GkbtU9Wv-pxGKxOraANU4xndLZFOowxBuvaKfgPDN8thXYTUPsfUManWzxh1Ni7gIP28W9DSCUrLvkPI11lYQ</recordid><startdate>19860201</startdate><enddate>19860201</enddate><creator>GAMBI, J. M</creator><creator>SAN MIGUEL, A</creator><general>Kluwer/Plenum</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19860201</creationdate><title>Relativistic orbital perturbations in a weak gravitational field</title><author>GAMBI, J. M ; SAN MIGUEL, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-9d76e0e9ac158f7b1e391af021de1cdeda21f3bd30f32530dafd1f3c4d19db023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>640106 - Astrophysics &amp; Cosmology- Cosmology</topic><topic>ANGULAR MOMENTUM OPERATORS</topic><topic>AXIAL SYMMETRY</topic><topic>CARTESIAN COORDINATES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical general relativity</topic><topic>COORDINATES</topic><topic>COSMOLOGICAL MODELS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>Exact sciences and technology</topic><topic>FIELD THEORIES</topic><topic>GAUGE INVARIANCE</topic><topic>General relativity and gravitation</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>GRAVITATIONAL FIELDS</topic><topic>INVARIANCE PRINCIPLES</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>ORBITS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PARTICLE MODELS</topic><topic>PERTURBATION THEORY</topic><topic>Physics</topic><topic>QUANTUM OPERATORS</topic><topic>SPACE-TIME</topic><topic>SYMMETRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GAMBI, J. M</creatorcontrib><creatorcontrib>SAN MIGUEL, A</creatorcontrib><creatorcontrib>Univ. of Valladolid, Valladolid</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Int. J. Theor. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GAMBI, J. M</au><au>SAN MIGUEL, A</au><aucorp>Univ. of Valladolid, Valladolid</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relativistic orbital perturbations in a weak gravitational field</atitle><jtitle>Int. J. Theor. Phys.; (United States)</jtitle><date>1986-02-01</date><risdate>1986</risdate><volume>25</volume><issue>2</issue><spage>175</spage><epage>193</epage><pages>175-193</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><coden>IJTPBM</coden><abstract>With the general third-order equations of motion for a test particle, Synge's third-order orbital equations at great distance in the weak gravitational field generated by a massive body are derived. The body has an axis of symmetry around which is rotating steadily. The results found for the advance of perihelion using first integrals of motion for the general equations show that the effect due to the inner stress of the body can be derived for orbits with inclination with respect to the equator of the body. Then, by means of the variation of the parameters method, we obtain with the equations at great distance the corresponding perturbations on the elements of such orbits in the field considered. These perturbations result to be of second order with regard to the mass of the body (the basis of the approximation).</abstract><cop>New York, NY</cop><pub>Kluwer/Plenum</pub><doi>10.1007/BF00677705</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7748
ispartof Int. J. Theor. Phys.; (United States), 1986-02, Vol.25 (2), p.175-193
issn 0020-7748
1572-9575
language eng
recordid cdi_crossref_primary_10_1007_BF00677705
source SpringerLink Journals - AutoHoldings
subjects 640106 - Astrophysics & Cosmology- Cosmology
ANGULAR MOMENTUM OPERATORS
AXIAL SYMMETRY
CARTESIAN COORDINATES
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Classical general relativity
COORDINATES
COSMOLOGICAL MODELS
DIFFERENTIAL EQUATIONS
EQUATIONS
EQUATIONS OF MOTION
Exact sciences and technology
FIELD THEORIES
GAUGE INVARIANCE
General relativity and gravitation
GENERAL RELATIVITY THEORY
GRAVITATIONAL FIELDS
INVARIANCE PRINCIPLES
MATHEMATICAL MODELS
MATHEMATICAL OPERATORS
ORBITS
PARTIAL DIFFERENTIAL EQUATIONS
PARTICLE MODELS
PERTURBATION THEORY
Physics
QUANTUM OPERATORS
SPACE-TIME
SYMMETRY
title Relativistic orbital perturbations in a weak gravitational field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relativistic%20orbital%20perturbations%20in%20a%20weak%20gravitational%20field&rft.jtitle=Int.%20J.%20Theor.%20Phys.;%20(United%20States)&rft.au=GAMBI,%20J.%20M&rft.aucorp=Univ.%20of%20Valladolid,%20Valladolid&rft.date=1986-02-01&rft.volume=25&rft.issue=2&rft.spage=175&rft.epage=193&rft.pages=175-193&rft.issn=0020-7748&rft.eissn=1572-9575&rft.coden=IJTPBM&rft_id=info:doi/10.1007/BF00677705&rft_dat=%3Cpascalfrancis_osti_%3E7898438%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true