Relativistic orbital perturbations in a weak gravitational field
With the general third-order equations of motion for a test particle, Synge's third-order orbital equations at great distance in the weak gravitational field generated by a massive body are derived. The body has an axis of symmetry around which is rotating steadily. The results found for the ad...
Gespeichert in:
Veröffentlicht in: | Int. J. Theor. Phys.; (United States) 1986-02, Vol.25 (2), p.175-193 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 2 |
container_start_page | 175 |
container_title | Int. J. Theor. Phys.; (United States) |
container_volume | 25 |
creator | GAMBI, J. M SAN MIGUEL, A |
description | With the general third-order equations of motion for a test particle, Synge's third-order orbital equations at great distance in the weak gravitational field generated by a massive body are derived. The body has an axis of symmetry around which is rotating steadily. The results found for the advance of perihelion using first integrals of motion for the general equations show that the effect due to the inner stress of the body can be derived for orbits with inclination with respect to the equator of the body. Then, by means of the variation of the parameters method, we obtain with the equations at great distance the corresponding perturbations on the elements of such orbits in the field considered. These perturbations result to be of second order with regard to the mass of the body (the basis of the approximation). |
doi_str_mv | 10.1007/BF00677705 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF00677705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7898438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-9d76e0e9ac158f7b1e391af021de1cdeda21f3bd30f32530dafd1f3c4d19db023</originalsourceid><addsrcrecordid>eNpF0E1LxDAQBuAgCq6rF39BEU9CdZK0TXJTF1eFBUH0XKb50GhtSxJX_PdmWdHTwMwzw_ASckzhnAKIi-slQCOEgHqHzGgtWKlqUe-SGQCDUohK7pODGN8AQEElZ-Ty0faY_NrH5HUxhs4n7IvJhvQZujwYh1j4ocDiy-J78RJwncGmnZXztjeHZM9hH-3Rb52T5-XN0-KuXD3c3i-uVqVmUqRSGdFYsAo1raUTHbVcUXTAqLFUG2uQUcc7w8FxVnMw6Exu6MpQZTpgfE5OtnfH_GkbtU9Wv-pxGKxOraANU4xndLZFOowxBuvaKfgPDN8thXYTUPsfUManWzxh1Ni7gIP28W9DSCUrLvkPI11lYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Relativistic orbital perturbations in a weak gravitational field</title><source>SpringerLink Journals - AutoHoldings</source><creator>GAMBI, J. M ; SAN MIGUEL, A</creator><creatorcontrib>GAMBI, J. M ; SAN MIGUEL, A ; Univ. of Valladolid, Valladolid</creatorcontrib><description>With the general third-order equations of motion for a test particle, Synge's third-order orbital equations at great distance in the weak gravitational field generated by a massive body are derived. The body has an axis of symmetry around which is rotating steadily. The results found for the advance of perihelion using first integrals of motion for the general equations show that the effect due to the inner stress of the body can be derived for orbits with inclination with respect to the equator of the body. Then, by means of the variation of the parameters method, we obtain with the equations at great distance the corresponding perturbations on the elements of such orbits in the field considered. These perturbations result to be of second order with regard to the mass of the body (the basis of the approximation).</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/BF00677705</identifier><identifier>CODEN: IJTPBM</identifier><language>eng</language><publisher>New York, NY: Kluwer/Plenum</publisher><subject>640106 - Astrophysics & Cosmology- Cosmology ; ANGULAR MOMENTUM OPERATORS ; AXIAL SYMMETRY ; CARTESIAN COORDINATES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical general relativity ; COORDINATES ; COSMOLOGICAL MODELS ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; EQUATIONS OF MOTION ; Exact sciences and technology ; FIELD THEORIES ; GAUGE INVARIANCE ; General relativity and gravitation ; GENERAL RELATIVITY THEORY ; GRAVITATIONAL FIELDS ; INVARIANCE PRINCIPLES ; MATHEMATICAL MODELS ; MATHEMATICAL OPERATORS ; ORBITS ; PARTIAL DIFFERENTIAL EQUATIONS ; PARTICLE MODELS ; PERTURBATION THEORY ; Physics ; QUANTUM OPERATORS ; SPACE-TIME ; SYMMETRY</subject><ispartof>Int. J. Theor. Phys.; (United States), 1986-02, Vol.25 (2), p.175-193</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-9d76e0e9ac158f7b1e391af021de1cdeda21f3bd30f32530dafd1f3c4d19db023</citedby><cites>FETCH-LOGICAL-c287t-9d76e0e9ac158f7b1e391af021de1cdeda21f3bd30f32530dafd1f3c4d19db023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7898438$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7162923$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>GAMBI, J. M</creatorcontrib><creatorcontrib>SAN MIGUEL, A</creatorcontrib><creatorcontrib>Univ. of Valladolid, Valladolid</creatorcontrib><title>Relativistic orbital perturbations in a weak gravitational field</title><title>Int. J. Theor. Phys.; (United States)</title><description>With the general third-order equations of motion for a test particle, Synge's third-order orbital equations at great distance in the weak gravitational field generated by a massive body are derived. The body has an axis of symmetry around which is rotating steadily. The results found for the advance of perihelion using first integrals of motion for the general equations show that the effect due to the inner stress of the body can be derived for orbits with inclination with respect to the equator of the body. Then, by means of the variation of the parameters method, we obtain with the equations at great distance the corresponding perturbations on the elements of such orbits in the field considered. These perturbations result to be of second order with regard to the mass of the body (the basis of the approximation).</description><subject>640106 - Astrophysics & Cosmology- Cosmology</subject><subject>ANGULAR MOMENTUM OPERATORS</subject><subject>AXIAL SYMMETRY</subject><subject>CARTESIAN COORDINATES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical general relativity</subject><subject>COORDINATES</subject><subject>COSMOLOGICAL MODELS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>Exact sciences and technology</subject><subject>FIELD THEORIES</subject><subject>GAUGE INVARIANCE</subject><subject>General relativity and gravitation</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>GRAVITATIONAL FIELDS</subject><subject>INVARIANCE PRINCIPLES</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>ORBITS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PARTICLE MODELS</subject><subject>PERTURBATION THEORY</subject><subject>Physics</subject><subject>QUANTUM OPERATORS</subject><subject>SPACE-TIME</subject><subject>SYMMETRY</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LxDAQBuAgCq6rF39BEU9CdZK0TXJTF1eFBUH0XKb50GhtSxJX_PdmWdHTwMwzw_ASckzhnAKIi-slQCOEgHqHzGgtWKlqUe-SGQCDUohK7pODGN8AQEElZ-Ty0faY_NrH5HUxhs4n7IvJhvQZujwYh1j4ocDiy-J78RJwncGmnZXztjeHZM9hH-3Rb52T5-XN0-KuXD3c3i-uVqVmUqRSGdFYsAo1raUTHbVcUXTAqLFUG2uQUcc7w8FxVnMw6Exu6MpQZTpgfE5OtnfH_GkbtU9Wv-pxGKxOraANU4xndLZFOowxBuvaKfgPDN8thXYTUPsfUManWzxh1Ni7gIP28W9DSCUrLvkPI11lYQ</recordid><startdate>19860201</startdate><enddate>19860201</enddate><creator>GAMBI, J. M</creator><creator>SAN MIGUEL, A</creator><general>Kluwer/Plenum</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19860201</creationdate><title>Relativistic orbital perturbations in a weak gravitational field</title><author>GAMBI, J. M ; SAN MIGUEL, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-9d76e0e9ac158f7b1e391af021de1cdeda21f3bd30f32530dafd1f3c4d19db023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>640106 - Astrophysics & Cosmology- Cosmology</topic><topic>ANGULAR MOMENTUM OPERATORS</topic><topic>AXIAL SYMMETRY</topic><topic>CARTESIAN COORDINATES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical general relativity</topic><topic>COORDINATES</topic><topic>COSMOLOGICAL MODELS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>Exact sciences and technology</topic><topic>FIELD THEORIES</topic><topic>GAUGE INVARIANCE</topic><topic>General relativity and gravitation</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>GRAVITATIONAL FIELDS</topic><topic>INVARIANCE PRINCIPLES</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>ORBITS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PARTICLE MODELS</topic><topic>PERTURBATION THEORY</topic><topic>Physics</topic><topic>QUANTUM OPERATORS</topic><topic>SPACE-TIME</topic><topic>SYMMETRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GAMBI, J. M</creatorcontrib><creatorcontrib>SAN MIGUEL, A</creatorcontrib><creatorcontrib>Univ. of Valladolid, Valladolid</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Int. J. Theor. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GAMBI, J. M</au><au>SAN MIGUEL, A</au><aucorp>Univ. of Valladolid, Valladolid</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relativistic orbital perturbations in a weak gravitational field</atitle><jtitle>Int. J. Theor. Phys.; (United States)</jtitle><date>1986-02-01</date><risdate>1986</risdate><volume>25</volume><issue>2</issue><spage>175</spage><epage>193</epage><pages>175-193</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><coden>IJTPBM</coden><abstract>With the general third-order equations of motion for a test particle, Synge's third-order orbital equations at great distance in the weak gravitational field generated by a massive body are derived. The body has an axis of symmetry around which is rotating steadily. The results found for the advance of perihelion using first integrals of motion for the general equations show that the effect due to the inner stress of the body can be derived for orbits with inclination with respect to the equator of the body. Then, by means of the variation of the parameters method, we obtain with the equations at great distance the corresponding perturbations on the elements of such orbits in the field considered. These perturbations result to be of second order with regard to the mass of the body (the basis of the approximation).</abstract><cop>New York, NY</cop><pub>Kluwer/Plenum</pub><doi>10.1007/BF00677705</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7748 |
ispartof | Int. J. Theor. Phys.; (United States), 1986-02, Vol.25 (2), p.175-193 |
issn | 0020-7748 1572-9575 |
language | eng |
recordid | cdi_crossref_primary_10_1007_BF00677705 |
source | SpringerLink Journals - AutoHoldings |
subjects | 640106 - Astrophysics & Cosmology- Cosmology ANGULAR MOMENTUM OPERATORS AXIAL SYMMETRY CARTESIAN COORDINATES CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Classical general relativity COORDINATES COSMOLOGICAL MODELS DIFFERENTIAL EQUATIONS EQUATIONS EQUATIONS OF MOTION Exact sciences and technology FIELD THEORIES GAUGE INVARIANCE General relativity and gravitation GENERAL RELATIVITY THEORY GRAVITATIONAL FIELDS INVARIANCE PRINCIPLES MATHEMATICAL MODELS MATHEMATICAL OPERATORS ORBITS PARTIAL DIFFERENTIAL EQUATIONS PARTICLE MODELS PERTURBATION THEORY Physics QUANTUM OPERATORS SPACE-TIME SYMMETRY |
title | Relativistic orbital perturbations in a weak gravitational field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relativistic%20orbital%20perturbations%20in%20a%20weak%20gravitational%20field&rft.jtitle=Int.%20J.%20Theor.%20Phys.;%20(United%20States)&rft.au=GAMBI,%20J.%20M&rft.aucorp=Univ.%20of%20Valladolid,%20Valladolid&rft.date=1986-02-01&rft.volume=25&rft.issue=2&rft.spage=175&rft.epage=193&rft.pages=175-193&rft.issn=0020-7748&rft.eissn=1572-9575&rft.coden=IJTPBM&rft_id=info:doi/10.1007/BF00677705&rft_dat=%3Cpascalfrancis_osti_%3E7898438%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |