Heat transfer to a particle under plasma conditions with vapor contamination from the particle
Heat transfer to a copper particle immersed into an argon plasma is considered in this paper, including the effects of contamination of the plasma (transport coefficients) by copper vapor from the particle. Except for cases of high plasma temperatures, the vapor content in the plasma is shown to hav...
Gespeichert in:
Veröffentlicht in: | Plasma Chem. Plasma Process.; (United States) 1985-06, Vol.5 (2), p.119-141 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141 |
---|---|
container_issue | 2 |
container_start_page | 119 |
container_title | Plasma Chem. Plasma Process.; (United States) |
container_volume | 5 |
creator | XI CHEN CHYOU, Y. P LEE, Y. C PFENDER, E |
description | Heat transfer to a copper particle immersed into an argon plasma is considered in this paper, including the effects of contamination of the plasma (transport coefficients) by copper vapor from the particle. Except for cases of high plasma temperatures, the vapor content in the plasma is shown to have a considerable influence on heat transfer to a nonevaporating particle, and, to a lesser extent, on heat transfer to an evaporating particle. Evaporation itself reduces heat transfer to a particle substantially as shown in a previous paper (Xi Chen and E. Pfender, Plasma Chem. Plasma Process., 2, 185 (1982)). Comparisons of the calculated results with those based on a method suggested in the above reference show that the simplified assumptions employed, i.e., that the surface temperature is equal to the boilingpoint and that plasma properties based on a fixed composition are applicable, can be employed to simplify calculations for many cases. This study reveals that a considerable portion of a particle must be vaporized before a steady concentration distribution is established around the particle. |
doi_str_mv | 10.1007/BF00566210 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF00566210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>9191000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-d0f389d218e2eeab679d9a69f82d3bcdfe98fefc11c11b2b115dd2f7397403fd3</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhYMoWKsv_oIgPgmrk6S7mzxqsVYo-KKvLrO50MjeSKLivzelUmFghjPfHIZDyCWDWwZQ3z2sAMqq4gyOyIyVNS-kktUxmQHP80LwxSk5i_EDIOOinpH3tcVEU8AhOhtoGinSCUPyurP0czBZmzqMPVI9DsYnPw6Rfvu0pV84jWGnJuz9gLsNdWHsadrag8U5OXHYRXvx1-fkbfX4ulwXm5en5-X9ptBclqkw4IRUhjNpubXYVrUyCivlJDei1cZZJZ11mrFcLW8ZK43hrhaqXoBwRszJ1d53jMk3Uftk9Tb_NlidmlKUIIXK0M0e0mGMMVjXTMH3GH4aBs0uvuY_vgxf7-EJo8bO5YS0j4cLxVS-APELY_FwLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heat transfer to a particle under plasma conditions with vapor contamination from the particle</title><source>SpringerLink_现刊</source><creator>XI CHEN ; CHYOU, Y. P ; LEE, Y. C ; PFENDER, E</creator><creatorcontrib>XI CHEN ; CHYOU, Y. P ; LEE, Y. C ; PFENDER, E ; Tsinghva Univ., Beijing</creatorcontrib><description>Heat transfer to a copper particle immersed into an argon plasma is considered in this paper, including the effects of contamination of the plasma (transport coefficients) by copper vapor from the particle. Except for cases of high plasma temperatures, the vapor content in the plasma is shown to have a considerable influence on heat transfer to a nonevaporating particle, and, to a lesser extent, on heat transfer to an evaporating particle. Evaporation itself reduces heat transfer to a particle substantially as shown in a previous paper (Xi Chen and E. Pfender, Plasma Chem. Plasma Process., 2, 185 (1982)). Comparisons of the calculated results with those based on a method suggested in the above reference show that the simplified assumptions employed, i.e., that the surface temperature is equal to the boilingpoint and that plasma properties based on a fixed composition are applicable, can be employed to simplify calculations for many cases. This study reveals that a considerable portion of a particle must be vaporized before a steady concentration distribution is established around the particle.</description><identifier>ISSN: 0272-4324</identifier><identifier>EISSN: 1572-8986</identifier><identifier>DOI: 10.1007/BF00566210</identifier><identifier>CODEN: PCPPDW</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>360101 - Metals & Alloys- Preparation & Fabrication ; 360104 - Metals & Alloys- Physical Properties ; ARGON ; BOILING POINTS ; CHAPMAN-ENSKOG THEORY ; Chemistry ; Colloidal state and disperse state ; CONTAMINATION ; COPPER ; DEPOSITION ; ELECTRON DENSITY ; ELEMENTS ; ENERGY TRANSFER ; EQUILIBRIUM ; EVAPORATION ; Exact sciences and technology ; FLUIDS ; GASES ; General and physical chemistry ; HEAT TRANSFER ; IONIZATION ; IONIZATION POTENTIAL ; LTE ; MASS TRANSFER ; MATERIALS SCIENCE ; MATHEMATICAL MODELS ; METALS ; NONMETALS ; PHASE TRANSFORMATIONS ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; PHYSICAL PROPERTIES ; PLASMA ; PLASMA ARC SPRAYING ; POWDERS ; RARE GASES ; SPRAY COATING ; SURFACE COATING ; TEMPERATURE DEPENDENCE ; THERMAL CONDUCTIVITY ; THERMODYNAMIC PROPERTIES ; THERMODYNAMICS ; TRANSITION ELEMENTS ; TRANSITION TEMPERATURE ; VAPORS</subject><ispartof>Plasma Chem. Plasma Process.; (United States), 1985-06, Vol.5 (2), p.119-141</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-d0f389d218e2eeab679d9a69f82d3bcdfe98fefc11c11b2b115dd2f7397403fd3</citedby><cites>FETCH-LOGICAL-c285t-d0f389d218e2eeab679d9a69f82d3bcdfe98fefc11c11b2b115dd2f7397403fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9191000$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5350839$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>XI CHEN</creatorcontrib><creatorcontrib>CHYOU, Y. P</creatorcontrib><creatorcontrib>LEE, Y. C</creatorcontrib><creatorcontrib>PFENDER, E</creatorcontrib><creatorcontrib>Tsinghva Univ., Beijing</creatorcontrib><title>Heat transfer to a particle under plasma conditions with vapor contamination from the particle</title><title>Plasma Chem. Plasma Process.; (United States)</title><description>Heat transfer to a copper particle immersed into an argon plasma is considered in this paper, including the effects of contamination of the plasma (transport coefficients) by copper vapor from the particle. Except for cases of high plasma temperatures, the vapor content in the plasma is shown to have a considerable influence on heat transfer to a nonevaporating particle, and, to a lesser extent, on heat transfer to an evaporating particle. Evaporation itself reduces heat transfer to a particle substantially as shown in a previous paper (Xi Chen and E. Pfender, Plasma Chem. Plasma Process., 2, 185 (1982)). Comparisons of the calculated results with those based on a method suggested in the above reference show that the simplified assumptions employed, i.e., that the surface temperature is equal to the boilingpoint and that plasma properties based on a fixed composition are applicable, can be employed to simplify calculations for many cases. This study reveals that a considerable portion of a particle must be vaporized before a steady concentration distribution is established around the particle.</description><subject>360101 - Metals & Alloys- Preparation & Fabrication</subject><subject>360104 - Metals & Alloys- Physical Properties</subject><subject>ARGON</subject><subject>BOILING POINTS</subject><subject>CHAPMAN-ENSKOG THEORY</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>CONTAMINATION</subject><subject>COPPER</subject><subject>DEPOSITION</subject><subject>ELECTRON DENSITY</subject><subject>ELEMENTS</subject><subject>ENERGY TRANSFER</subject><subject>EQUILIBRIUM</subject><subject>EVAPORATION</subject><subject>Exact sciences and technology</subject><subject>FLUIDS</subject><subject>GASES</subject><subject>General and physical chemistry</subject><subject>HEAT TRANSFER</subject><subject>IONIZATION</subject><subject>IONIZATION POTENTIAL</subject><subject>LTE</subject><subject>MASS TRANSFER</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICAL MODELS</subject><subject>METALS</subject><subject>NONMETALS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>PHYSICAL PROPERTIES</subject><subject>PLASMA</subject><subject>PLASMA ARC SPRAYING</subject><subject>POWDERS</subject><subject>RARE GASES</subject><subject>SPRAY COATING</subject><subject>SURFACE COATING</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>THERMAL CONDUCTIVITY</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>THERMODYNAMICS</subject><subject>TRANSITION ELEMENTS</subject><subject>TRANSITION TEMPERATURE</subject><subject>VAPORS</subject><issn>0272-4324</issn><issn>1572-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNpFkFtLAzEQhYMoWKsv_oIgPgmrk6S7mzxqsVYo-KKvLrO50MjeSKLivzelUmFghjPfHIZDyCWDWwZQ3z2sAMqq4gyOyIyVNS-kktUxmQHP80LwxSk5i_EDIOOinpH3tcVEU8AhOhtoGinSCUPyurP0czBZmzqMPVI9DsYnPw6Rfvu0pV84jWGnJuz9gLsNdWHsadrag8U5OXHYRXvx1-fkbfX4ulwXm5en5-X9ptBclqkw4IRUhjNpubXYVrUyCivlJDei1cZZJZ11mrFcLW8ZK43hrhaqXoBwRszJ1d53jMk3Uftk9Tb_NlidmlKUIIXK0M0e0mGMMVjXTMH3GH4aBs0uvuY_vgxf7-EJo8bO5YS0j4cLxVS-APELY_FwLg</recordid><startdate>198506</startdate><enddate>198506</enddate><creator>XI CHEN</creator><creator>CHYOU, Y. P</creator><creator>LEE, Y. C</creator><creator>PFENDER, E</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198506</creationdate><title>Heat transfer to a particle under plasma conditions with vapor contamination from the particle</title><author>XI CHEN ; CHYOU, Y. P ; LEE, Y. C ; PFENDER, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-d0f389d218e2eeab679d9a69f82d3bcdfe98fefc11c11b2b115dd2f7397403fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>360101 - Metals & Alloys- Preparation & Fabrication</topic><topic>360104 - Metals & Alloys- Physical Properties</topic><topic>ARGON</topic><topic>BOILING POINTS</topic><topic>CHAPMAN-ENSKOG THEORY</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>CONTAMINATION</topic><topic>COPPER</topic><topic>DEPOSITION</topic><topic>ELECTRON DENSITY</topic><topic>ELEMENTS</topic><topic>ENERGY TRANSFER</topic><topic>EQUILIBRIUM</topic><topic>EVAPORATION</topic><topic>Exact sciences and technology</topic><topic>FLUIDS</topic><topic>GASES</topic><topic>General and physical chemistry</topic><topic>HEAT TRANSFER</topic><topic>IONIZATION</topic><topic>IONIZATION POTENTIAL</topic><topic>LTE</topic><topic>MASS TRANSFER</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICAL MODELS</topic><topic>METALS</topic><topic>NONMETALS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>PHYSICAL PROPERTIES</topic><topic>PLASMA</topic><topic>PLASMA ARC SPRAYING</topic><topic>POWDERS</topic><topic>RARE GASES</topic><topic>SPRAY COATING</topic><topic>SURFACE COATING</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>THERMAL CONDUCTIVITY</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>THERMODYNAMICS</topic><topic>TRANSITION ELEMENTS</topic><topic>TRANSITION TEMPERATURE</topic><topic>VAPORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XI CHEN</creatorcontrib><creatorcontrib>CHYOU, Y. P</creatorcontrib><creatorcontrib>LEE, Y. C</creatorcontrib><creatorcontrib>PFENDER, E</creatorcontrib><creatorcontrib>Tsinghva Univ., Beijing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Plasma Chem. Plasma Process.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XI CHEN</au><au>CHYOU, Y. P</au><au>LEE, Y. C</au><au>PFENDER, E</au><aucorp>Tsinghva Univ., Beijing</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer to a particle under plasma conditions with vapor contamination from the particle</atitle><jtitle>Plasma Chem. Plasma Process.; (United States)</jtitle><date>1985-06</date><risdate>1985</risdate><volume>5</volume><issue>2</issue><spage>119</spage><epage>141</epage><pages>119-141</pages><issn>0272-4324</issn><eissn>1572-8986</eissn><coden>PCPPDW</coden><abstract>Heat transfer to a copper particle immersed into an argon plasma is considered in this paper, including the effects of contamination of the plasma (transport coefficients) by copper vapor from the particle. Except for cases of high plasma temperatures, the vapor content in the plasma is shown to have a considerable influence on heat transfer to a nonevaporating particle, and, to a lesser extent, on heat transfer to an evaporating particle. Evaporation itself reduces heat transfer to a particle substantially as shown in a previous paper (Xi Chen and E. Pfender, Plasma Chem. Plasma Process., 2, 185 (1982)). Comparisons of the calculated results with those based on a method suggested in the above reference show that the simplified assumptions employed, i.e., that the surface temperature is equal to the boilingpoint and that plasma properties based on a fixed composition are applicable, can be employed to simplify calculations for many cases. This study reveals that a considerable portion of a particle must be vaporized before a steady concentration distribution is established around the particle.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/BF00566210</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4324 |
ispartof | Plasma Chem. Plasma Process.; (United States), 1985-06, Vol.5 (2), p.119-141 |
issn | 0272-4324 1572-8986 |
language | eng |
recordid | cdi_crossref_primary_10_1007_BF00566210 |
source | SpringerLink_现刊 |
subjects | 360101 - Metals & Alloys- Preparation & Fabrication 360104 - Metals & Alloys- Physical Properties ARGON BOILING POINTS CHAPMAN-ENSKOG THEORY Chemistry Colloidal state and disperse state CONTAMINATION COPPER DEPOSITION ELECTRON DENSITY ELEMENTS ENERGY TRANSFER EQUILIBRIUM EVAPORATION Exact sciences and technology FLUIDS GASES General and physical chemistry HEAT TRANSFER IONIZATION IONIZATION POTENTIAL LTE MASS TRANSFER MATERIALS SCIENCE MATHEMATICAL MODELS METALS NONMETALS PHASE TRANSFORMATIONS Physical and chemical studies. Granulometry. Electrokinetic phenomena PHYSICAL PROPERTIES PLASMA PLASMA ARC SPRAYING POWDERS RARE GASES SPRAY COATING SURFACE COATING TEMPERATURE DEPENDENCE THERMAL CONDUCTIVITY THERMODYNAMIC PROPERTIES THERMODYNAMICS TRANSITION ELEMENTS TRANSITION TEMPERATURE VAPORS |
title | Heat transfer to a particle under plasma conditions with vapor contamination from the particle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20to%20a%20particle%20under%20plasma%20conditions%20with%20vapor%20contamination%20from%20the%20particle&rft.jtitle=Plasma%20Chem.%20Plasma%20Process.;%20(United%20States)&rft.au=XI%20CHEN&rft.aucorp=Tsinghva%20Univ.,%20Beijing&rft.date=1985-06&rft.volume=5&rft.issue=2&rft.spage=119&rft.epage=141&rft.pages=119-141&rft.issn=0272-4324&rft.eissn=1572-8986&rft.coden=PCPPDW&rft_id=info:doi/10.1007/BF00566210&rft_dat=%3Cpascalfrancis_osti_%3E9191000%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |