Heat transfer to a particle under plasma conditions with vapor contamination from the particle

Heat transfer to a copper particle immersed into an argon plasma is considered in this paper, including the effects of contamination of the plasma (transport coefficients) by copper vapor from the particle. Except for cases of high plasma temperatures, the vapor content in the plasma is shown to hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma Chem. Plasma Process.; (United States) 1985-06, Vol.5 (2), p.119-141
Hauptverfasser: XI CHEN, CHYOU, Y. P, LEE, Y. C, PFENDER, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 2
container_start_page 119
container_title Plasma Chem. Plasma Process.; (United States)
container_volume 5
creator XI CHEN
CHYOU, Y. P
LEE, Y. C
PFENDER, E
description Heat transfer to a copper particle immersed into an argon plasma is considered in this paper, including the effects of contamination of the plasma (transport coefficients) by copper vapor from the particle. Except for cases of high plasma temperatures, the vapor content in the plasma is shown to have a considerable influence on heat transfer to a nonevaporating particle, and, to a lesser extent, on heat transfer to an evaporating particle. Evaporation itself reduces heat transfer to a particle substantially as shown in a previous paper (Xi Chen and E. Pfender, Plasma Chem. Plasma Process., 2, 185 (1982)). Comparisons of the calculated results with those based on a method suggested in the above reference show that the simplified assumptions employed, i.e., that the surface temperature is equal to the boilingpoint and that plasma properties based on a fixed composition are applicable, can be employed to simplify calculations for many cases. This study reveals that a considerable portion of a particle must be vaporized before a steady concentration distribution is established around the particle.
doi_str_mv 10.1007/BF00566210
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF00566210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>9191000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-d0f389d218e2eeab679d9a69f82d3bcdfe98fefc11c11b2b115dd2f7397403fd3</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhYMoWKsv_oIgPgmrk6S7mzxqsVYo-KKvLrO50MjeSKLivzelUmFghjPfHIZDyCWDWwZQ3z2sAMqq4gyOyIyVNS-kktUxmQHP80LwxSk5i_EDIOOinpH3tcVEU8AhOhtoGinSCUPyurP0czBZmzqMPVI9DsYnPw6Rfvu0pV84jWGnJuz9gLsNdWHsadrag8U5OXHYRXvx1-fkbfX4ulwXm5en5-X9ptBclqkw4IRUhjNpubXYVrUyCivlJDei1cZZJZ11mrFcLW8ZK43hrhaqXoBwRszJ1d53jMk3Uftk9Tb_NlidmlKUIIXK0M0e0mGMMVjXTMH3GH4aBs0uvuY_vgxf7-EJo8bO5YS0j4cLxVS-APELY_FwLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heat transfer to a particle under plasma conditions with vapor contamination from the particle</title><source>SpringerLink_现刊</source><creator>XI CHEN ; CHYOU, Y. P ; LEE, Y. C ; PFENDER, E</creator><creatorcontrib>XI CHEN ; CHYOU, Y. P ; LEE, Y. C ; PFENDER, E ; Tsinghva Univ., Beijing</creatorcontrib><description>Heat transfer to a copper particle immersed into an argon plasma is considered in this paper, including the effects of contamination of the plasma (transport coefficients) by copper vapor from the particle. Except for cases of high plasma temperatures, the vapor content in the plasma is shown to have a considerable influence on heat transfer to a nonevaporating particle, and, to a lesser extent, on heat transfer to an evaporating particle. Evaporation itself reduces heat transfer to a particle substantially as shown in a previous paper (Xi Chen and E. Pfender, Plasma Chem. Plasma Process., 2, 185 (1982)). Comparisons of the calculated results with those based on a method suggested in the above reference show that the simplified assumptions employed, i.e., that the surface temperature is equal to the boilingpoint and that plasma properties based on a fixed composition are applicable, can be employed to simplify calculations for many cases. This study reveals that a considerable portion of a particle must be vaporized before a steady concentration distribution is established around the particle.</description><identifier>ISSN: 0272-4324</identifier><identifier>EISSN: 1572-8986</identifier><identifier>DOI: 10.1007/BF00566210</identifier><identifier>CODEN: PCPPDW</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>360101 - Metals &amp; Alloys- Preparation &amp; Fabrication ; 360104 - Metals &amp; Alloys- Physical Properties ; ARGON ; BOILING POINTS ; CHAPMAN-ENSKOG THEORY ; Chemistry ; Colloidal state and disperse state ; CONTAMINATION ; COPPER ; DEPOSITION ; ELECTRON DENSITY ; ELEMENTS ; ENERGY TRANSFER ; EQUILIBRIUM ; EVAPORATION ; Exact sciences and technology ; FLUIDS ; GASES ; General and physical chemistry ; HEAT TRANSFER ; IONIZATION ; IONIZATION POTENTIAL ; LTE ; MASS TRANSFER ; MATERIALS SCIENCE ; MATHEMATICAL MODELS ; METALS ; NONMETALS ; PHASE TRANSFORMATIONS ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; PHYSICAL PROPERTIES ; PLASMA ; PLASMA ARC SPRAYING ; POWDERS ; RARE GASES ; SPRAY COATING ; SURFACE COATING ; TEMPERATURE DEPENDENCE ; THERMAL CONDUCTIVITY ; THERMODYNAMIC PROPERTIES ; THERMODYNAMICS ; TRANSITION ELEMENTS ; TRANSITION TEMPERATURE ; VAPORS</subject><ispartof>Plasma Chem. Plasma Process.; (United States), 1985-06, Vol.5 (2), p.119-141</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-d0f389d218e2eeab679d9a69f82d3bcdfe98fefc11c11b2b115dd2f7397403fd3</citedby><cites>FETCH-LOGICAL-c285t-d0f389d218e2eeab679d9a69f82d3bcdfe98fefc11c11b2b115dd2f7397403fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9191000$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5350839$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>XI CHEN</creatorcontrib><creatorcontrib>CHYOU, Y. P</creatorcontrib><creatorcontrib>LEE, Y. C</creatorcontrib><creatorcontrib>PFENDER, E</creatorcontrib><creatorcontrib>Tsinghva Univ., Beijing</creatorcontrib><title>Heat transfer to a particle under plasma conditions with vapor contamination from the particle</title><title>Plasma Chem. Plasma Process.; (United States)</title><description>Heat transfer to a copper particle immersed into an argon plasma is considered in this paper, including the effects of contamination of the plasma (transport coefficients) by copper vapor from the particle. Except for cases of high plasma temperatures, the vapor content in the plasma is shown to have a considerable influence on heat transfer to a nonevaporating particle, and, to a lesser extent, on heat transfer to an evaporating particle. Evaporation itself reduces heat transfer to a particle substantially as shown in a previous paper (Xi Chen and E. Pfender, Plasma Chem. Plasma Process., 2, 185 (1982)). Comparisons of the calculated results with those based on a method suggested in the above reference show that the simplified assumptions employed, i.e., that the surface temperature is equal to the boilingpoint and that plasma properties based on a fixed composition are applicable, can be employed to simplify calculations for many cases. This study reveals that a considerable portion of a particle must be vaporized before a steady concentration distribution is established around the particle.</description><subject>360101 - Metals &amp; Alloys- Preparation &amp; Fabrication</subject><subject>360104 - Metals &amp; Alloys- Physical Properties</subject><subject>ARGON</subject><subject>BOILING POINTS</subject><subject>CHAPMAN-ENSKOG THEORY</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>CONTAMINATION</subject><subject>COPPER</subject><subject>DEPOSITION</subject><subject>ELECTRON DENSITY</subject><subject>ELEMENTS</subject><subject>ENERGY TRANSFER</subject><subject>EQUILIBRIUM</subject><subject>EVAPORATION</subject><subject>Exact sciences and technology</subject><subject>FLUIDS</subject><subject>GASES</subject><subject>General and physical chemistry</subject><subject>HEAT TRANSFER</subject><subject>IONIZATION</subject><subject>IONIZATION POTENTIAL</subject><subject>LTE</subject><subject>MASS TRANSFER</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICAL MODELS</subject><subject>METALS</subject><subject>NONMETALS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>PHYSICAL PROPERTIES</subject><subject>PLASMA</subject><subject>PLASMA ARC SPRAYING</subject><subject>POWDERS</subject><subject>RARE GASES</subject><subject>SPRAY COATING</subject><subject>SURFACE COATING</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>THERMAL CONDUCTIVITY</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>THERMODYNAMICS</subject><subject>TRANSITION ELEMENTS</subject><subject>TRANSITION TEMPERATURE</subject><subject>VAPORS</subject><issn>0272-4324</issn><issn>1572-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNpFkFtLAzEQhYMoWKsv_oIgPgmrk6S7mzxqsVYo-KKvLrO50MjeSKLivzelUmFghjPfHIZDyCWDWwZQ3z2sAMqq4gyOyIyVNS-kktUxmQHP80LwxSk5i_EDIOOinpH3tcVEU8AhOhtoGinSCUPyurP0czBZmzqMPVI9DsYnPw6Rfvu0pV84jWGnJuz9gLsNdWHsadrag8U5OXHYRXvx1-fkbfX4ulwXm5en5-X9ptBclqkw4IRUhjNpubXYVrUyCivlJDei1cZZJZ11mrFcLW8ZK43hrhaqXoBwRszJ1d53jMk3Uftk9Tb_NlidmlKUIIXK0M0e0mGMMVjXTMH3GH4aBs0uvuY_vgxf7-EJo8bO5YS0j4cLxVS-APELY_FwLg</recordid><startdate>198506</startdate><enddate>198506</enddate><creator>XI CHEN</creator><creator>CHYOU, Y. P</creator><creator>LEE, Y. C</creator><creator>PFENDER, E</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198506</creationdate><title>Heat transfer to a particle under plasma conditions with vapor contamination from the particle</title><author>XI CHEN ; CHYOU, Y. P ; LEE, Y. C ; PFENDER, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-d0f389d218e2eeab679d9a69f82d3bcdfe98fefc11c11b2b115dd2f7397403fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>360101 - Metals &amp; Alloys- Preparation &amp; Fabrication</topic><topic>360104 - Metals &amp; Alloys- Physical Properties</topic><topic>ARGON</topic><topic>BOILING POINTS</topic><topic>CHAPMAN-ENSKOG THEORY</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>CONTAMINATION</topic><topic>COPPER</topic><topic>DEPOSITION</topic><topic>ELECTRON DENSITY</topic><topic>ELEMENTS</topic><topic>ENERGY TRANSFER</topic><topic>EQUILIBRIUM</topic><topic>EVAPORATION</topic><topic>Exact sciences and technology</topic><topic>FLUIDS</topic><topic>GASES</topic><topic>General and physical chemistry</topic><topic>HEAT TRANSFER</topic><topic>IONIZATION</topic><topic>IONIZATION POTENTIAL</topic><topic>LTE</topic><topic>MASS TRANSFER</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICAL MODELS</topic><topic>METALS</topic><topic>NONMETALS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>PHYSICAL PROPERTIES</topic><topic>PLASMA</topic><topic>PLASMA ARC SPRAYING</topic><topic>POWDERS</topic><topic>RARE GASES</topic><topic>SPRAY COATING</topic><topic>SURFACE COATING</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>THERMAL CONDUCTIVITY</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>THERMODYNAMICS</topic><topic>TRANSITION ELEMENTS</topic><topic>TRANSITION TEMPERATURE</topic><topic>VAPORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XI CHEN</creatorcontrib><creatorcontrib>CHYOU, Y. P</creatorcontrib><creatorcontrib>LEE, Y. C</creatorcontrib><creatorcontrib>PFENDER, E</creatorcontrib><creatorcontrib>Tsinghva Univ., Beijing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Plasma Chem. Plasma Process.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XI CHEN</au><au>CHYOU, Y. P</au><au>LEE, Y. C</au><au>PFENDER, E</au><aucorp>Tsinghva Univ., Beijing</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer to a particle under plasma conditions with vapor contamination from the particle</atitle><jtitle>Plasma Chem. Plasma Process.; (United States)</jtitle><date>1985-06</date><risdate>1985</risdate><volume>5</volume><issue>2</issue><spage>119</spage><epage>141</epage><pages>119-141</pages><issn>0272-4324</issn><eissn>1572-8986</eissn><coden>PCPPDW</coden><abstract>Heat transfer to a copper particle immersed into an argon plasma is considered in this paper, including the effects of contamination of the plasma (transport coefficients) by copper vapor from the particle. Except for cases of high plasma temperatures, the vapor content in the plasma is shown to have a considerable influence on heat transfer to a nonevaporating particle, and, to a lesser extent, on heat transfer to an evaporating particle. Evaporation itself reduces heat transfer to a particle substantially as shown in a previous paper (Xi Chen and E. Pfender, Plasma Chem. Plasma Process., 2, 185 (1982)). Comparisons of the calculated results with those based on a method suggested in the above reference show that the simplified assumptions employed, i.e., that the surface temperature is equal to the boilingpoint and that plasma properties based on a fixed composition are applicable, can be employed to simplify calculations for many cases. This study reveals that a considerable portion of a particle must be vaporized before a steady concentration distribution is established around the particle.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/BF00566210</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4324
ispartof Plasma Chem. Plasma Process.; (United States), 1985-06, Vol.5 (2), p.119-141
issn 0272-4324
1572-8986
language eng
recordid cdi_crossref_primary_10_1007_BF00566210
source SpringerLink_现刊
subjects 360101 - Metals & Alloys- Preparation & Fabrication
360104 - Metals & Alloys- Physical Properties
ARGON
BOILING POINTS
CHAPMAN-ENSKOG THEORY
Chemistry
Colloidal state and disperse state
CONTAMINATION
COPPER
DEPOSITION
ELECTRON DENSITY
ELEMENTS
ENERGY TRANSFER
EQUILIBRIUM
EVAPORATION
Exact sciences and technology
FLUIDS
GASES
General and physical chemistry
HEAT TRANSFER
IONIZATION
IONIZATION POTENTIAL
LTE
MASS TRANSFER
MATERIALS SCIENCE
MATHEMATICAL MODELS
METALS
NONMETALS
PHASE TRANSFORMATIONS
Physical and chemical studies. Granulometry. Electrokinetic phenomena
PHYSICAL PROPERTIES
PLASMA
PLASMA ARC SPRAYING
POWDERS
RARE GASES
SPRAY COATING
SURFACE COATING
TEMPERATURE DEPENDENCE
THERMAL CONDUCTIVITY
THERMODYNAMIC PROPERTIES
THERMODYNAMICS
TRANSITION ELEMENTS
TRANSITION TEMPERATURE
VAPORS
title Heat transfer to a particle under plasma conditions with vapor contamination from the particle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20to%20a%20particle%20under%20plasma%20conditions%20with%20vapor%20contamination%20from%20the%20particle&rft.jtitle=Plasma%20Chem.%20Plasma%20Process.;%20(United%20States)&rft.au=XI%20CHEN&rft.aucorp=Tsinghva%20Univ.,%20Beijing&rft.date=1985-06&rft.volume=5&rft.issue=2&rft.spage=119&rft.epage=141&rft.pages=119-141&rft.issn=0272-4324&rft.eissn=1572-8986&rft.coden=PCPPDW&rft_id=info:doi/10.1007/BF00566210&rft_dat=%3Cpascalfrancis_osti_%3E9191000%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true