Method of projectors and the construction of Green's function of the wave equation

In the present article problems related to the propagation of waves in elastic anisotropic media with arbitrary types of symmetry are considered. Such problems are important for solid-body physics and for geophysics. An expansion of Green`s function of the wave equation of the theory of elasticity i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian Physics Journal 1995-10, Vol.38 (4), p.419-429
Hauptverfasser: Vshivtsev, A. S., Peregudov, D. V., Tatarintsev, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 429
container_issue 4
container_start_page 419
container_title Russian Physics Journal
container_volume 38
creator Vshivtsev, A. S.
Peregudov, D. V.
Tatarintsev, A. V.
description In the present article problems related to the propagation of waves in elastic anisotropic media with arbitrary types of symmetry are considered. Such problems are important for solid-body physics and for geophysics. An expansion of Green`s function of the wave equation of the theory of elasticity is presented in the form of additive terms corresponding to the contributions of each of the three waves propagating in a solid body with designated anisotropic characteristics. An appropriate representation for the roots of the characteristic equation specifying the rate of wave propagation is presented. To illustrate the computation technique examples of certain types of media are considered. A representation is obtained for the static Green`s function that does not require knowledge of the exact roots of the characteristic equation (assuming there is no degeneracy present).
doi_str_mv 10.1007/BF00560108
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF00560108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_BF00560108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c131t-bfec75dfe8b82380b194a75cd145c52c6bd8f15a40090a80838c5d6447a47d273</originalsourceid><addsrcrecordid>eNpFkE9LAzEUxIMoWKsXP0E8CcLqyybZvB61tFWoCKLnJZs_dItuapJV_PbuUtHTG4Yfw7wh5JzBNQNQN3dLAFkBAzwgEyYVL2ZliYeDhkoUiKiOyUlKWxgQqNSEPD-6vAmWBk93MWydySEmqjtL88ZRE7qUY29yG7oRWUXnustEfd_9eSP3pT8ddR-9Hs1TcuT1W3Jnv3dKXpeLl_l9sX5aPcxv14VhnOWi8c4oab3DBkuO0LCZ0Eoay4Q0sjRVY9EzqQXADDQCcjTSVkIoLZQtFZ-Si31uSLmtk2mzM5uhcTc8UTPkklcDc7VnTAwpRefrXWzfdfyuGdTjYvX_YvwHtBxdSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Method of projectors and the construction of Green's function of the wave equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vshivtsev, A. S. ; Peregudov, D. V. ; Tatarintsev, A. V.</creator><creatorcontrib>Vshivtsev, A. S. ; Peregudov, D. V. ; Tatarintsev, A. V.</creatorcontrib><description>In the present article problems related to the propagation of waves in elastic anisotropic media with arbitrary types of symmetry are considered. Such problems are important for solid-body physics and for geophysics. An expansion of Green`s function of the wave equation of the theory of elasticity is presented in the form of additive terms corresponding to the contributions of each of the three waves propagating in a solid body with designated anisotropic characteristics. An appropriate representation for the roots of the characteristic equation specifying the rate of wave propagation is presented. To illustrate the computation technique examples of certain types of media are considered. A representation is obtained for the static Green`s function that does not require knowledge of the exact roots of the characteristic equation (assuming there is no degeneracy present).</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/BF00560108</identifier><language>eng</language><publisher>United States</publisher><subject>CRYSTALS ; EIGENVALUES ; ELASTICITY ; FOURIER TRANSFORMATION ; GREEN FUNCTION ; PHYSICS ; POLYNOMIALS ; WAVE EQUATIONS ; WAVE PROPAGATION</subject><ispartof>Russian Physics Journal, 1995-10, Vol.38 (4), p.419-429</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/183536$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vshivtsev, A. S.</creatorcontrib><creatorcontrib>Peregudov, D. V.</creatorcontrib><creatorcontrib>Tatarintsev, A. V.</creatorcontrib><title>Method of projectors and the construction of Green's function of the wave equation</title><title>Russian Physics Journal</title><description>In the present article problems related to the propagation of waves in elastic anisotropic media with arbitrary types of symmetry are considered. Such problems are important for solid-body physics and for geophysics. An expansion of Green`s function of the wave equation of the theory of elasticity is presented in the form of additive terms corresponding to the contributions of each of the three waves propagating in a solid body with designated anisotropic characteristics. An appropriate representation for the roots of the characteristic equation specifying the rate of wave propagation is presented. To illustrate the computation technique examples of certain types of media are considered. A representation is obtained for the static Green`s function that does not require knowledge of the exact roots of the characteristic equation (assuming there is no degeneracy present).</description><subject>CRYSTALS</subject><subject>EIGENVALUES</subject><subject>ELASTICITY</subject><subject>FOURIER TRANSFORMATION</subject><subject>GREEN FUNCTION</subject><subject>PHYSICS</subject><subject>POLYNOMIALS</subject><subject>WAVE EQUATIONS</subject><subject>WAVE PROPAGATION</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEUxIMoWKsXP0E8CcLqyybZvB61tFWoCKLnJZs_dItuapJV_PbuUtHTG4Yfw7wh5JzBNQNQN3dLAFkBAzwgEyYVL2ZliYeDhkoUiKiOyUlKWxgQqNSEPD-6vAmWBk93MWydySEmqjtL88ZRE7qUY29yG7oRWUXnustEfd_9eSP3pT8ddR-9Hs1TcuT1W3Jnv3dKXpeLl_l9sX5aPcxv14VhnOWi8c4oab3DBkuO0LCZ0Eoay4Q0sjRVY9EzqQXADDQCcjTSVkIoLZQtFZ-Si31uSLmtk2mzM5uhcTc8UTPkklcDc7VnTAwpRefrXWzfdfyuGdTjYvX_YvwHtBxdSA</recordid><startdate>19951001</startdate><enddate>19951001</enddate><creator>Vshivtsev, A. S.</creator><creator>Peregudov, D. V.</creator><creator>Tatarintsev, A. V.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19951001</creationdate><title>Method of projectors and the construction of Green's function of the wave equation</title><author>Vshivtsev, A. S. ; Peregudov, D. V. ; Tatarintsev, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c131t-bfec75dfe8b82380b194a75cd145c52c6bd8f15a40090a80838c5d6447a47d273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>CRYSTALS</topic><topic>EIGENVALUES</topic><topic>ELASTICITY</topic><topic>FOURIER TRANSFORMATION</topic><topic>GREEN FUNCTION</topic><topic>PHYSICS</topic><topic>POLYNOMIALS</topic><topic>WAVE EQUATIONS</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vshivtsev, A. S.</creatorcontrib><creatorcontrib>Peregudov, D. V.</creatorcontrib><creatorcontrib>Tatarintsev, A. V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Russian Physics Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vshivtsev, A. S.</au><au>Peregudov, D. V.</au><au>Tatarintsev, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method of projectors and the construction of Green's function of the wave equation</atitle><jtitle>Russian Physics Journal</jtitle><date>1995-10-01</date><risdate>1995</risdate><volume>38</volume><issue>4</issue><spage>419</spage><epage>429</epage><pages>419-429</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>In the present article problems related to the propagation of waves in elastic anisotropic media with arbitrary types of symmetry are considered. Such problems are important for solid-body physics and for geophysics. An expansion of Green`s function of the wave equation of the theory of elasticity is presented in the form of additive terms corresponding to the contributions of each of the three waves propagating in a solid body with designated anisotropic characteristics. An appropriate representation for the roots of the characteristic equation specifying the rate of wave propagation is presented. To illustrate the computation technique examples of certain types of media are considered. A representation is obtained for the static Green`s function that does not require knowledge of the exact roots of the characteristic equation (assuming there is no degeneracy present).</abstract><cop>United States</cop><doi>10.1007/BF00560108</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian Physics Journal, 1995-10, Vol.38 (4), p.419-429
issn 1064-8887
1573-9228
language eng
recordid cdi_crossref_primary_10_1007_BF00560108
source SpringerLink Journals - AutoHoldings
subjects CRYSTALS
EIGENVALUES
ELASTICITY
FOURIER TRANSFORMATION
GREEN FUNCTION
PHYSICS
POLYNOMIALS
WAVE EQUATIONS
WAVE PROPAGATION
title Method of projectors and the construction of Green's function of the wave equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20of%20projectors%20and%20the%20construction%20of%20Green's%20function%20of%20the%20wave%20equation&rft.jtitle=Russian%20Physics%20Journal&rft.au=Vshivtsev,%20A.%20S.&rft.date=1995-10-01&rft.volume=38&rft.issue=4&rft.spage=419&rft.epage=429&rft.pages=419-429&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/BF00560108&rft_dat=%3Ccrossref_osti_%3E10_1007_BF00560108%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true