Method of projectors and the construction of Green's function of the wave equation
In the present article problems related to the propagation of waves in elastic anisotropic media with arbitrary types of symmetry are considered. Such problems are important for solid-body physics and for geophysics. An expansion of Green`s function of the wave equation of the theory of elasticity i...
Gespeichert in:
Veröffentlicht in: | Russian Physics Journal 1995-10, Vol.38 (4), p.419-429 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 429 |
---|---|
container_issue | 4 |
container_start_page | 419 |
container_title | Russian Physics Journal |
container_volume | 38 |
creator | Vshivtsev, A. S. Peregudov, D. V. Tatarintsev, A. V. |
description | In the present article problems related to the propagation of waves in elastic anisotropic media with arbitrary types of symmetry are considered. Such problems are important for solid-body physics and for geophysics. An expansion of Green`s function of the wave equation of the theory of elasticity is presented in the form of additive terms corresponding to the contributions of each of the three waves propagating in a solid body with designated anisotropic characteristics. An appropriate representation for the roots of the characteristic equation specifying the rate of wave propagation is presented. To illustrate the computation technique examples of certain types of media are considered. A representation is obtained for the static Green`s function that does not require knowledge of the exact roots of the characteristic equation (assuming there is no degeneracy present). |
doi_str_mv | 10.1007/BF00560108 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF00560108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_BF00560108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c131t-bfec75dfe8b82380b194a75cd145c52c6bd8f15a40090a80838c5d6447a47d273</originalsourceid><addsrcrecordid>eNpFkE9LAzEUxIMoWKsXP0E8CcLqyybZvB61tFWoCKLnJZs_dItuapJV_PbuUtHTG4Yfw7wh5JzBNQNQN3dLAFkBAzwgEyYVL2ZliYeDhkoUiKiOyUlKWxgQqNSEPD-6vAmWBk93MWydySEmqjtL88ZRE7qUY29yG7oRWUXnustEfd_9eSP3pT8ddR-9Hs1TcuT1W3Jnv3dKXpeLl_l9sX5aPcxv14VhnOWi8c4oab3DBkuO0LCZ0Eoay4Q0sjRVY9EzqQXADDQCcjTSVkIoLZQtFZ-Si31uSLmtk2mzM5uhcTc8UTPkklcDc7VnTAwpRefrXWzfdfyuGdTjYvX_YvwHtBxdSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Method of projectors and the construction of Green's function of the wave equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vshivtsev, A. S. ; Peregudov, D. V. ; Tatarintsev, A. V.</creator><creatorcontrib>Vshivtsev, A. S. ; Peregudov, D. V. ; Tatarintsev, A. V.</creatorcontrib><description>In the present article problems related to the propagation of waves in elastic anisotropic media with arbitrary types of symmetry are considered. Such problems are important for solid-body physics and for geophysics. An expansion of Green`s function of the wave equation of the theory of elasticity is presented in the form of additive terms corresponding to the contributions of each of the three waves propagating in a solid body with designated anisotropic characteristics. An appropriate representation for the roots of the characteristic equation specifying the rate of wave propagation is presented. To illustrate the computation technique examples of certain types of media are considered. A representation is obtained for the static Green`s function that does not require knowledge of the exact roots of the characteristic equation (assuming there is no degeneracy present).</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/BF00560108</identifier><language>eng</language><publisher>United States</publisher><subject>CRYSTALS ; EIGENVALUES ; ELASTICITY ; FOURIER TRANSFORMATION ; GREEN FUNCTION ; PHYSICS ; POLYNOMIALS ; WAVE EQUATIONS ; WAVE PROPAGATION</subject><ispartof>Russian Physics Journal, 1995-10, Vol.38 (4), p.419-429</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/183536$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vshivtsev, A. S.</creatorcontrib><creatorcontrib>Peregudov, D. V.</creatorcontrib><creatorcontrib>Tatarintsev, A. V.</creatorcontrib><title>Method of projectors and the construction of Green's function of the wave equation</title><title>Russian Physics Journal</title><description>In the present article problems related to the propagation of waves in elastic anisotropic media with arbitrary types of symmetry are considered. Such problems are important for solid-body physics and for geophysics. An expansion of Green`s function of the wave equation of the theory of elasticity is presented in the form of additive terms corresponding to the contributions of each of the three waves propagating in a solid body with designated anisotropic characteristics. An appropriate representation for the roots of the characteristic equation specifying the rate of wave propagation is presented. To illustrate the computation technique examples of certain types of media are considered. A representation is obtained for the static Green`s function that does not require knowledge of the exact roots of the characteristic equation (assuming there is no degeneracy present).</description><subject>CRYSTALS</subject><subject>EIGENVALUES</subject><subject>ELASTICITY</subject><subject>FOURIER TRANSFORMATION</subject><subject>GREEN FUNCTION</subject><subject>PHYSICS</subject><subject>POLYNOMIALS</subject><subject>WAVE EQUATIONS</subject><subject>WAVE PROPAGATION</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEUxIMoWKsXP0E8CcLqyybZvB61tFWoCKLnJZs_dItuapJV_PbuUtHTG4Yfw7wh5JzBNQNQN3dLAFkBAzwgEyYVL2ZliYeDhkoUiKiOyUlKWxgQqNSEPD-6vAmWBk93MWydySEmqjtL88ZRE7qUY29yG7oRWUXnustEfd_9eSP3pT8ddR-9Hs1TcuT1W3Jnv3dKXpeLl_l9sX5aPcxv14VhnOWi8c4oab3DBkuO0LCZ0Eoay4Q0sjRVY9EzqQXADDQCcjTSVkIoLZQtFZ-Si31uSLmtk2mzM5uhcTc8UTPkklcDc7VnTAwpRefrXWzfdfyuGdTjYvX_YvwHtBxdSA</recordid><startdate>19951001</startdate><enddate>19951001</enddate><creator>Vshivtsev, A. S.</creator><creator>Peregudov, D. V.</creator><creator>Tatarintsev, A. V.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19951001</creationdate><title>Method of projectors and the construction of Green's function of the wave equation</title><author>Vshivtsev, A. S. ; Peregudov, D. V. ; Tatarintsev, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c131t-bfec75dfe8b82380b194a75cd145c52c6bd8f15a40090a80838c5d6447a47d273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>CRYSTALS</topic><topic>EIGENVALUES</topic><topic>ELASTICITY</topic><topic>FOURIER TRANSFORMATION</topic><topic>GREEN FUNCTION</topic><topic>PHYSICS</topic><topic>POLYNOMIALS</topic><topic>WAVE EQUATIONS</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vshivtsev, A. S.</creatorcontrib><creatorcontrib>Peregudov, D. V.</creatorcontrib><creatorcontrib>Tatarintsev, A. V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Russian Physics Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vshivtsev, A. S.</au><au>Peregudov, D. V.</au><au>Tatarintsev, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method of projectors and the construction of Green's function of the wave equation</atitle><jtitle>Russian Physics Journal</jtitle><date>1995-10-01</date><risdate>1995</risdate><volume>38</volume><issue>4</issue><spage>419</spage><epage>429</epage><pages>419-429</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>In the present article problems related to the propagation of waves in elastic anisotropic media with arbitrary types of symmetry are considered. Such problems are important for solid-body physics and for geophysics. An expansion of Green`s function of the wave equation of the theory of elasticity is presented in the form of additive terms corresponding to the contributions of each of the three waves propagating in a solid body with designated anisotropic characteristics. An appropriate representation for the roots of the characteristic equation specifying the rate of wave propagation is presented. To illustrate the computation technique examples of certain types of media are considered. A representation is obtained for the static Green`s function that does not require knowledge of the exact roots of the characteristic equation (assuming there is no degeneracy present).</abstract><cop>United States</cop><doi>10.1007/BF00560108</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8887 |
ispartof | Russian Physics Journal, 1995-10, Vol.38 (4), p.419-429 |
issn | 1064-8887 1573-9228 |
language | eng |
recordid | cdi_crossref_primary_10_1007_BF00560108 |
source | SpringerLink Journals - AutoHoldings |
subjects | CRYSTALS EIGENVALUES ELASTICITY FOURIER TRANSFORMATION GREEN FUNCTION PHYSICS POLYNOMIALS WAVE EQUATIONS WAVE PROPAGATION |
title | Method of projectors and the construction of Green's function of the wave equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20of%20projectors%20and%20the%20construction%20of%20Green's%20function%20of%20the%20wave%20equation&rft.jtitle=Russian%20Physics%20Journal&rft.au=Vshivtsev,%20A.%20S.&rft.date=1995-10-01&rft.volume=38&rft.issue=4&rft.spage=419&rft.epage=429&rft.pages=419-429&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/BF00560108&rft_dat=%3Ccrossref_osti_%3E10_1007_BF00560108%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |