Biogeochemical controls on aluminum chemistry in the O horizon of a red spruce (Picea rubens Sarg.) stand in central Maine, USA
This study examined the biotic and abiotic processes controlling solution chemistry and cycling of aluminum (Al) in the organic horizons of a northern coniferous forest ecosystem. A mass balance budget indicated that aboveground inputs of Al to the O horizon averaged 0.9 kg ha-1 yr-1, with major inp...
Gespeichert in:
Veröffentlicht in: | Biogeochemistry 1995-05, Vol.29 (2), p.107-129 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study examined the biotic and abiotic processes controlling solution chemistry and cycling of aluminum (Al) in the organic horizons of a northern coniferous forest ecosystem. A mass balance budget indicated that aboveground inputs of Al to the O horizon averaged 0.9 kg ha-1 yr-1, with major inputs accounted for by litterfall (69%), followed by precipitation (21%), and net canopy throughfall plus stemflow (10%). Estimated leaching losses of Al from the O horizon averaged 2.1 kg Al ha-1 yr-1. We hypothesize that the difference between measured Al inputs and outputs can be accounted for by Al release from weathering of soil minerals admixed into the O horizon. Variations in O horizon solution Al chemistry were influenced by a number of factors, including pH, Al equilibria with different solid-phase organic exchange sites, and Al complexation with humic ligands in soil solution. |
---|---|
ISSN: | 0168-2563 1573-515X |
DOI: | 10.1007/BF00000228 |