PHYSICAL AND NUMERICAL MODELLING OF THE DYNAMIC BEHAVIOR OF A FLY LINE

The planar equations of motion for a tapered fly line subjected to tension, bending, aerodynamic drag, and weight are derived. The resulting theory describes the large non-linear deformation of the line as it forms a propagating loop during fly casting. A cast is initiated by the motion of the tip o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2002, Vol.255 (3), p.555-577
Hauptverfasser: GATTI-BONO, C., PERKINS, N.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 577
container_issue 3
container_start_page 555
container_title Journal of sound and vibration
container_volume 255
creator GATTI-BONO, C.
PERKINS, N.C.
description The planar equations of motion for a tapered fly line subjected to tension, bending, aerodynamic drag, and weight are derived. The resulting theory describes the large non-linear deformation of the line as it forms a propagating loop during fly casting. A cast is initiated by the motion of the tip of the fly rod that represents the boundary condition at one end of the fly line. At the opposite end, the boundary condition describes the equations of motion of a small attached fly (point mass with air drag). An efficient numerical algorithm is reviewed that captures the initiation and propagation of a non-linear wave that describes the loop. The algorithm is composed of three major steps. First, the non-linear initial-boundary-value problem is transformed into a two-point boundary-value problem, using finite differencing in time. The resulting non-linear boundary-value problem is linearized and then transformed into an initial-value problem in space. Example results are provided that illustrate how an overhead cast develops from initial conditions describing a perfectly laid out back cast. The numerical solutions are used to explore the influence of two sample effects in fly casting, namely, the drag created by the attached fly and the shape of the rod tip path.
doi_str_mv 10.1006/jsvi.2001.4180
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jsvi_2001_4180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X0194180X</els_id><sourcerecordid>S0022460X0194180X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-dff46b8b2a1b4f8c11c88c9f1117f55f4381a018f998654308b9683d41724f293</originalsourceid><addsrcrecordid>eNp1kEFPg0AQhTdGE2v16nkvHsEZWOhwxBYKCQVTW2NPG1jYhKa2Dds08d8L1sSTp8lM3nvz8jH2iGAjgP-8NefWdgDQFkhwxUYIgWeR59M1GwE4jiV8-Lhld8ZsASAQrhix-DXZvKXTMONhPuP5ehEtf7ZFMYuyLM3nvIj5Kon4bJOHi3TKX6IkfE-L5XAPeZxteK-K7tmNLnemefidY7aOo9U0sbJiPuRZykX_ZNVaC7-iyimxEpoUoiJSgUbEifY8LVzCEpB0EJDvCReoCnxya4ETR2gncMfMvuSq7mBM12h57NrPsvuSCHKgIAcKcqAgBwq94eliOJZGlTvdlXvVmj-XS0SAk15HF13Ttz-3TSeNapu9auq2a9RJ1of2vxffYptoYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PHYSICAL AND NUMERICAL MODELLING OF THE DYNAMIC BEHAVIOR OF A FLY LINE</title><source>Elsevier ScienceDirect Journals</source><creator>GATTI-BONO, C. ; PERKINS, N.C.</creator><creatorcontrib>GATTI-BONO, C. ; PERKINS, N.C.</creatorcontrib><description>The planar equations of motion for a tapered fly line subjected to tension, bending, aerodynamic drag, and weight are derived. The resulting theory describes the large non-linear deformation of the line as it forms a propagating loop during fly casting. A cast is initiated by the motion of the tip of the fly rod that represents the boundary condition at one end of the fly line. At the opposite end, the boundary condition describes the equations of motion of a small attached fly (point mass with air drag). An efficient numerical algorithm is reviewed that captures the initiation and propagation of a non-linear wave that describes the loop. The algorithm is composed of three major steps. First, the non-linear initial-boundary-value problem is transformed into a two-point boundary-value problem, using finite differencing in time. The resulting non-linear boundary-value problem is linearized and then transformed into an initial-value problem in space. Example results are provided that illustrate how an overhead cast develops from initial conditions describing a perfectly laid out back cast. The numerical solutions are used to explore the influence of two sample effects in fly casting, namely, the drag created by the attached fly and the shape of the rod tip path.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1006/jsvi.2001.4180</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Journal of sound and vibration, 2002, Vol.255 (3), p.555-577</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-dff46b8b2a1b4f8c11c88c9f1117f55f4381a018f998654308b9683d41724f293</citedby><cites>FETCH-LOGICAL-c316t-dff46b8b2a1b4f8c11c88c9f1117f55f4381a018f998654308b9683d41724f293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022460X0194180X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13888017$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GATTI-BONO, C.</creatorcontrib><creatorcontrib>PERKINS, N.C.</creatorcontrib><title>PHYSICAL AND NUMERICAL MODELLING OF THE DYNAMIC BEHAVIOR OF A FLY LINE</title><title>Journal of sound and vibration</title><description>The planar equations of motion for a tapered fly line subjected to tension, bending, aerodynamic drag, and weight are derived. The resulting theory describes the large non-linear deformation of the line as it forms a propagating loop during fly casting. A cast is initiated by the motion of the tip of the fly rod that represents the boundary condition at one end of the fly line. At the opposite end, the boundary condition describes the equations of motion of a small attached fly (point mass with air drag). An efficient numerical algorithm is reviewed that captures the initiation and propagation of a non-linear wave that describes the loop. The algorithm is composed of three major steps. First, the non-linear initial-boundary-value problem is transformed into a two-point boundary-value problem, using finite differencing in time. The resulting non-linear boundary-value problem is linearized and then transformed into an initial-value problem in space. Example results are provided that illustrate how an overhead cast develops from initial conditions describing a perfectly laid out back cast. The numerical solutions are used to explore the influence of two sample effects in fly casting, namely, the drag created by the attached fly and the shape of the rod tip path.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPg0AQhTdGE2v16nkvHsEZWOhwxBYKCQVTW2NPG1jYhKa2Dds08d8L1sSTp8lM3nvz8jH2iGAjgP-8NefWdgDQFkhwxUYIgWeR59M1GwE4jiV8-Lhld8ZsASAQrhix-DXZvKXTMONhPuP5ehEtf7ZFMYuyLM3nvIj5Kon4bJOHi3TKX6IkfE-L5XAPeZxteK-K7tmNLnemefidY7aOo9U0sbJiPuRZykX_ZNVaC7-iyimxEpoUoiJSgUbEifY8LVzCEpB0EJDvCReoCnxya4ETR2gncMfMvuSq7mBM12h57NrPsvuSCHKgIAcKcqAgBwq94eliOJZGlTvdlXvVmj-XS0SAk15HF13Ttz-3TSeNapu9auq2a9RJ1of2vxffYptoYg</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>GATTI-BONO, C.</creator><creator>PERKINS, N.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2002</creationdate><title>PHYSICAL AND NUMERICAL MODELLING OF THE DYNAMIC BEHAVIOR OF A FLY LINE</title><author>GATTI-BONO, C. ; PERKINS, N.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-dff46b8b2a1b4f8c11c88c9f1117f55f4381a018f998654308b9683d41724f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GATTI-BONO, C.</creatorcontrib><creatorcontrib>PERKINS, N.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GATTI-BONO, C.</au><au>PERKINS, N.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PHYSICAL AND NUMERICAL MODELLING OF THE DYNAMIC BEHAVIOR OF A FLY LINE</atitle><jtitle>Journal of sound and vibration</jtitle><date>2002</date><risdate>2002</risdate><volume>255</volume><issue>3</issue><spage>555</spage><epage>577</epage><pages>555-577</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>The planar equations of motion for a tapered fly line subjected to tension, bending, aerodynamic drag, and weight are derived. The resulting theory describes the large non-linear deformation of the line as it forms a propagating loop during fly casting. A cast is initiated by the motion of the tip of the fly rod that represents the boundary condition at one end of the fly line. At the opposite end, the boundary condition describes the equations of motion of a small attached fly (point mass with air drag). An efficient numerical algorithm is reviewed that captures the initiation and propagation of a non-linear wave that describes the loop. The algorithm is composed of three major steps. First, the non-linear initial-boundary-value problem is transformed into a two-point boundary-value problem, using finite differencing in time. The resulting non-linear boundary-value problem is linearized and then transformed into an initial-value problem in space. Example results are provided that illustrate how an overhead cast develops from initial conditions describing a perfectly laid out back cast. The numerical solutions are used to explore the influence of two sample effects in fly casting, namely, the drag created by the attached fly and the shape of the rod tip path.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1006/jsvi.2001.4180</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2002, Vol.255 (3), p.555-577
issn 0022-460X
1095-8568
language eng
recordid cdi_crossref_primary_10_1006_jsvi_2001_4180
source Elsevier ScienceDirect Journals
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title PHYSICAL AND NUMERICAL MODELLING OF THE DYNAMIC BEHAVIOR OF A FLY LINE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PHYSICAL%20AND%20NUMERICAL%20MODELLING%20OF%20THE%20DYNAMIC%20BEHAVIOR%20OF%20A%20FLY%20LINE&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=GATTI-BONO,%20C.&rft.date=2002&rft.volume=255&rft.issue=3&rft.spage=555&rft.epage=577&rft.pages=555-577&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1006/jsvi.2001.4180&rft_dat=%3Celsevier_cross%3ES0022460X0194180X%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022460X0194180X&rfr_iscdi=true