VERIFICATION OF LOCAL KRAMERS–KRONIG RELATIONS FOR COMPLEX MODULUS BY MEANS OF FRACTIONAL DERIVATIVE MODEL

The local Kramers–Kronig (K–K) relations, which link the damping properties of solid materials at one frequency to the rate of frequency variation of dynamic modulus, are not exact. The validity and accuracy of the local K–K relations is theoretically investigated in this paper by means of material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 1999-12, Vol.228 (5), p.1145-1165
1. Verfasser: PRITZ, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1165
container_issue 5
container_start_page 1145
container_title Journal of sound and vibration
container_volume 228
creator PRITZ, T.
description The local Kramers–Kronig (K–K) relations, which link the damping properties of solid materials at one frequency to the rate of frequency variation of dynamic modulus, are not exact. The validity and accuracy of the local K–K relations is theoretically investigated in this paper by means of material models, especially the fractional Zener model. It is shown that the local K–K relations qualitatively always properly predict the relation between the damping and the frequency dependence of dynamic modulus for any type of deformation and any linear mechanism of energy loss determining the frequency variations. Nevertheless, the accuracy depends on the rate of frequency variation of dynamic properties, mainly of the loss modulus and loss factor, and the weaker the frequency dependence, the better the accuracy. The accuracy is better than 10% if the slope of frequency increase or decrease of loss functions plotted in a log–log system is smaller than 0·35. The application of the local K–K relations to some experimental data is presented.
doi_str_mv 10.1006/jsvi.1999.2495
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jsvi_1999_2495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X99924951</els_id><sourcerecordid>S0022460X99924951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-3ecd9aaec1de8f954f5e9dabcda30043ab52009ab976357e6bf94c650961735d3</originalsourceid><addsrcrecordid>eNp1kL1OwzAYRS0EEqWwMntgTbDjOI3HkCYlalKj9EdlshzHkVKVtoqrSmy8A2_Ik-BQJCYmD98511cXgHuMXIxQ8Lgxp9bFjDHX8xm9AAOMGHVCGoSXYICQ5zl-gNbX4MaYDUKI-cQfgO0qKbM0i6NFxmeQpzDncZTDaRkVSTn_-viclnyWTWCZ5D_IHKa8hDEvXvJkDQs-XubLOXx6hUUS2aMNSMso7kmbMrbZK6utkp5M8ltw1cit0Xe_7xAs02QRPzs5n9gKuaMIpkeHaFUzKbXCtQ4bRv2GalbLStWSIOQTWVHP9pcVGwWEjnRQNcxXAUUswCNCazIE7jlXdXtjOt2IQ9e-ye5dYCT6rUS_lei3Ev1WVng4CwdplNw2ndyp1vxZHvYIwRYLz5i25U-t7oRRrd4pXbedVkdR79v_fvgGVdt2Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>VERIFICATION OF LOCAL KRAMERS–KRONIG RELATIONS FOR COMPLEX MODULUS BY MEANS OF FRACTIONAL DERIVATIVE MODEL</title><source>Elsevier ScienceDirect Journals</source><creator>PRITZ, T.</creator><creatorcontrib>PRITZ, T.</creatorcontrib><description>The local Kramers–Kronig (K–K) relations, which link the damping properties of solid materials at one frequency to the rate of frequency variation of dynamic modulus, are not exact. The validity and accuracy of the local K–K relations is theoretically investigated in this paper by means of material models, especially the fractional Zener model. It is shown that the local K–K relations qualitatively always properly predict the relation between the damping and the frequency dependence of dynamic modulus for any type of deformation and any linear mechanism of energy loss determining the frequency variations. Nevertheless, the accuracy depends on the rate of frequency variation of dynamic properties, mainly of the loss modulus and loss factor, and the weaker the frequency dependence, the better the accuracy. The accuracy is better than 10% if the slope of frequency increase or decrease of loss functions plotted in a log–log system is smaller than 0·35. The application of the local K–K relations to some experimental data is presented.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1006/jsvi.1999.2495</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Journal of sound and vibration, 1999-12, Vol.228 (5), p.1145-1165</ispartof><rights>1999 Academic Press</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-3ecd9aaec1de8f954f5e9dabcda30043ab52009ab976357e6bf94c650961735d3</citedby><cites>FETCH-LOGICAL-c315t-3ecd9aaec1de8f954f5e9dabcda30043ab52009ab976357e6bf94c650961735d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022460X99924951$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1212331$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PRITZ, T.</creatorcontrib><title>VERIFICATION OF LOCAL KRAMERS–KRONIG RELATIONS FOR COMPLEX MODULUS BY MEANS OF FRACTIONAL DERIVATIVE MODEL</title><title>Journal of sound and vibration</title><description>The local Kramers–Kronig (K–K) relations, which link the damping properties of solid materials at one frequency to the rate of frequency variation of dynamic modulus, are not exact. The validity and accuracy of the local K–K relations is theoretically investigated in this paper by means of material models, especially the fractional Zener model. It is shown that the local K–K relations qualitatively always properly predict the relation between the damping and the frequency dependence of dynamic modulus for any type of deformation and any linear mechanism of energy loss determining the frequency variations. Nevertheless, the accuracy depends on the rate of frequency variation of dynamic properties, mainly of the loss modulus and loss factor, and the weaker the frequency dependence, the better the accuracy. The accuracy is better than 10% if the slope of frequency increase or decrease of loss functions plotted in a log–log system is smaller than 0·35. The application of the local K–K relations to some experimental data is presented.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAYRS0EEqWwMntgTbDjOI3HkCYlalKj9EdlshzHkVKVtoqrSmy8A2_Ik-BQJCYmD98511cXgHuMXIxQ8Lgxp9bFjDHX8xm9AAOMGHVCGoSXYICQ5zl-gNbX4MaYDUKI-cQfgO0qKbM0i6NFxmeQpzDncZTDaRkVSTn_-viclnyWTWCZ5D_IHKa8hDEvXvJkDQs-XubLOXx6hUUS2aMNSMso7kmbMrbZK6utkp5M8ltw1cit0Xe_7xAs02QRPzs5n9gKuaMIpkeHaFUzKbXCtQ4bRv2GalbLStWSIOQTWVHP9pcVGwWEjnRQNcxXAUUswCNCazIE7jlXdXtjOt2IQ9e-ye5dYCT6rUS_lei3Ev1WVng4CwdplNw2ndyp1vxZHvYIwRYLz5i25U-t7oRRrd4pXbedVkdR79v_fvgGVdt2Rg</recordid><startdate>19991216</startdate><enddate>19991216</enddate><creator>PRITZ, T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991216</creationdate><title>VERIFICATION OF LOCAL KRAMERS–KRONIG RELATIONS FOR COMPLEX MODULUS BY MEANS OF FRACTIONAL DERIVATIVE MODEL</title><author>PRITZ, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-3ecd9aaec1de8f954f5e9dabcda30043ab52009ab976357e6bf94c650961735d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PRITZ, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PRITZ, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VERIFICATION OF LOCAL KRAMERS–KRONIG RELATIONS FOR COMPLEX MODULUS BY MEANS OF FRACTIONAL DERIVATIVE MODEL</atitle><jtitle>Journal of sound and vibration</jtitle><date>1999-12-16</date><risdate>1999</risdate><volume>228</volume><issue>5</issue><spage>1145</spage><epage>1165</epage><pages>1145-1165</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>The local Kramers–Kronig (K–K) relations, which link the damping properties of solid materials at one frequency to the rate of frequency variation of dynamic modulus, are not exact. The validity and accuracy of the local K–K relations is theoretically investigated in this paper by means of material models, especially the fractional Zener model. It is shown that the local K–K relations qualitatively always properly predict the relation between the damping and the frequency dependence of dynamic modulus for any type of deformation and any linear mechanism of energy loss determining the frequency variations. Nevertheless, the accuracy depends on the rate of frequency variation of dynamic properties, mainly of the loss modulus and loss factor, and the weaker the frequency dependence, the better the accuracy. The accuracy is better than 10% if the slope of frequency increase or decrease of loss functions plotted in a log–log system is smaller than 0·35. The application of the local K–K relations to some experimental data is presented.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1006/jsvi.1999.2495</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 1999-12, Vol.228 (5), p.1145-1165
issn 0022-460X
1095-8568
language eng
recordid cdi_crossref_primary_10_1006_jsvi_1999_2495
source Elsevier ScienceDirect Journals
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
title VERIFICATION OF LOCAL KRAMERS–KRONIG RELATIONS FOR COMPLEX MODULUS BY MEANS OF FRACTIONAL DERIVATIVE MODEL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VERIFICATION%20OF%20LOCAL%20KRAMERS%E2%80%93KRONIG%20RELATIONS%20FOR%20COMPLEX%20MODULUS%20BY%20MEANS%20OF%20FRACTIONAL%20DERIVATIVE%20MODEL&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=PRITZ,%20T.&rft.date=1999-12-16&rft.volume=228&rft.issue=5&rft.spage=1145&rft.epage=1165&rft.pages=1145-1165&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1006/jsvi.1999.2495&rft_dat=%3Celsevier_cross%3ES0022460X99924951%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022460X99924951&rfr_iscdi=true