VERIFICATION OF LOCAL KRAMERS–KRONIG RELATIONS FOR COMPLEX MODULUS BY MEANS OF FRACTIONAL DERIVATIVE MODEL
The local Kramers–Kronig (K–K) relations, which link the damping properties of solid materials at one frequency to the rate of frequency variation of dynamic modulus, are not exact. The validity and accuracy of the local K–K relations is theoretically investigated in this paper by means of material...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 1999-12, Vol.228 (5), p.1145-1165 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1165 |
---|---|
container_issue | 5 |
container_start_page | 1145 |
container_title | Journal of sound and vibration |
container_volume | 228 |
creator | PRITZ, T. |
description | The local Kramers–Kronig (K–K) relations, which link the damping properties of solid materials at one frequency to the rate of frequency variation of dynamic modulus, are not exact. The validity and accuracy of the local K–K relations is theoretically investigated in this paper by means of material models, especially the fractional Zener model. It is shown that the local K–K relations qualitatively always properly predict the relation between the damping and the frequency dependence of dynamic modulus for any type of deformation and any linear mechanism of energy loss determining the frequency variations. Nevertheless, the accuracy depends on the rate of frequency variation of dynamic properties, mainly of the loss modulus and loss factor, and the weaker the frequency dependence, the better the accuracy. The accuracy is better than 10% if the slope of frequency increase or decrease of loss functions plotted in a log–log system is smaller than 0·35. The application of the local K–K relations to some experimental data is presented. |
doi_str_mv | 10.1006/jsvi.1999.2495 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jsvi_1999_2495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X99924951</els_id><sourcerecordid>S0022460X99924951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-3ecd9aaec1de8f954f5e9dabcda30043ab52009ab976357e6bf94c650961735d3</originalsourceid><addsrcrecordid>eNp1kL1OwzAYRS0EEqWwMntgTbDjOI3HkCYlalKj9EdlshzHkVKVtoqrSmy8A2_Ik-BQJCYmD98511cXgHuMXIxQ8Lgxp9bFjDHX8xm9AAOMGHVCGoSXYICQ5zl-gNbX4MaYDUKI-cQfgO0qKbM0i6NFxmeQpzDncZTDaRkVSTn_-viclnyWTWCZ5D_IHKa8hDEvXvJkDQs-XubLOXx6hUUS2aMNSMso7kmbMrbZK6utkp5M8ltw1cit0Xe_7xAs02QRPzs5n9gKuaMIpkeHaFUzKbXCtQ4bRv2GalbLStWSIOQTWVHP9pcVGwWEjnRQNcxXAUUswCNCazIE7jlXdXtjOt2IQ9e-ye5dYCT6rUS_lei3Ev1WVng4CwdplNw2ndyp1vxZHvYIwRYLz5i25U-t7oRRrd4pXbedVkdR79v_fvgGVdt2Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>VERIFICATION OF LOCAL KRAMERS–KRONIG RELATIONS FOR COMPLEX MODULUS BY MEANS OF FRACTIONAL DERIVATIVE MODEL</title><source>Elsevier ScienceDirect Journals</source><creator>PRITZ, T.</creator><creatorcontrib>PRITZ, T.</creatorcontrib><description>The local Kramers–Kronig (K–K) relations, which link the damping properties of solid materials at one frequency to the rate of frequency variation of dynamic modulus, are not exact. The validity and accuracy of the local K–K relations is theoretically investigated in this paper by means of material models, especially the fractional Zener model. It is shown that the local K–K relations qualitatively always properly predict the relation between the damping and the frequency dependence of dynamic modulus for any type of deformation and any linear mechanism of energy loss determining the frequency variations. Nevertheless, the accuracy depends on the rate of frequency variation of dynamic properties, mainly of the loss modulus and loss factor, and the weaker the frequency dependence, the better the accuracy. The accuracy is better than 10% if the slope of frequency increase or decrease of loss functions plotted in a log–log system is smaller than 0·35. The application of the local K–K relations to some experimental data is presented.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1006/jsvi.1999.2495</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Journal of sound and vibration, 1999-12, Vol.228 (5), p.1145-1165</ispartof><rights>1999 Academic Press</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-3ecd9aaec1de8f954f5e9dabcda30043ab52009ab976357e6bf94c650961735d3</citedby><cites>FETCH-LOGICAL-c315t-3ecd9aaec1de8f954f5e9dabcda30043ab52009ab976357e6bf94c650961735d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022460X99924951$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1212331$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PRITZ, T.</creatorcontrib><title>VERIFICATION OF LOCAL KRAMERS–KRONIG RELATIONS FOR COMPLEX MODULUS BY MEANS OF FRACTIONAL DERIVATIVE MODEL</title><title>Journal of sound and vibration</title><description>The local Kramers–Kronig (K–K) relations, which link the damping properties of solid materials at one frequency to the rate of frequency variation of dynamic modulus, are not exact. The validity and accuracy of the local K–K relations is theoretically investigated in this paper by means of material models, especially the fractional Zener model. It is shown that the local K–K relations qualitatively always properly predict the relation between the damping and the frequency dependence of dynamic modulus for any type of deformation and any linear mechanism of energy loss determining the frequency variations. Nevertheless, the accuracy depends on the rate of frequency variation of dynamic properties, mainly of the loss modulus and loss factor, and the weaker the frequency dependence, the better the accuracy. The accuracy is better than 10% if the slope of frequency increase or decrease of loss functions plotted in a log–log system is smaller than 0·35. The application of the local K–K relations to some experimental data is presented.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAYRS0EEqWwMntgTbDjOI3HkCYlalKj9EdlshzHkVKVtoqrSmy8A2_Ik-BQJCYmD98511cXgHuMXIxQ8Lgxp9bFjDHX8xm9AAOMGHVCGoSXYICQ5zl-gNbX4MaYDUKI-cQfgO0qKbM0i6NFxmeQpzDncZTDaRkVSTn_-viclnyWTWCZ5D_IHKa8hDEvXvJkDQs-XubLOXx6hUUS2aMNSMso7kmbMrbZK6utkp5M8ltw1cit0Xe_7xAs02QRPzs5n9gKuaMIpkeHaFUzKbXCtQ4bRv2GalbLStWSIOQTWVHP9pcVGwWEjnRQNcxXAUUswCNCazIE7jlXdXtjOt2IQ9e-ye5dYCT6rUS_lei3Ev1WVng4CwdplNw2ndyp1vxZHvYIwRYLz5i25U-t7oRRrd4pXbedVkdR79v_fvgGVdt2Rg</recordid><startdate>19991216</startdate><enddate>19991216</enddate><creator>PRITZ, T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991216</creationdate><title>VERIFICATION OF LOCAL KRAMERS–KRONIG RELATIONS FOR COMPLEX MODULUS BY MEANS OF FRACTIONAL DERIVATIVE MODEL</title><author>PRITZ, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-3ecd9aaec1de8f954f5e9dabcda30043ab52009ab976357e6bf94c650961735d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PRITZ, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PRITZ, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VERIFICATION OF LOCAL KRAMERS–KRONIG RELATIONS FOR COMPLEX MODULUS BY MEANS OF FRACTIONAL DERIVATIVE MODEL</atitle><jtitle>Journal of sound and vibration</jtitle><date>1999-12-16</date><risdate>1999</risdate><volume>228</volume><issue>5</issue><spage>1145</spage><epage>1165</epage><pages>1145-1165</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>The local Kramers–Kronig (K–K) relations, which link the damping properties of solid materials at one frequency to the rate of frequency variation of dynamic modulus, are not exact. The validity and accuracy of the local K–K relations is theoretically investigated in this paper by means of material models, especially the fractional Zener model. It is shown that the local K–K relations qualitatively always properly predict the relation between the damping and the frequency dependence of dynamic modulus for any type of deformation and any linear mechanism of energy loss determining the frequency variations. Nevertheless, the accuracy depends on the rate of frequency variation of dynamic properties, mainly of the loss modulus and loss factor, and the weaker the frequency dependence, the better the accuracy. The accuracy is better than 10% if the slope of frequency increase or decrease of loss functions plotted in a log–log system is smaller than 0·35. The application of the local K–K relations to some experimental data is presented.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1006/jsvi.1999.2495</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 1999-12, Vol.228 (5), p.1145-1165 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jsvi_1999_2495 |
source | Elsevier ScienceDirect Journals |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Vibrations and mechanical waves |
title | VERIFICATION OF LOCAL KRAMERS–KRONIG RELATIONS FOR COMPLEX MODULUS BY MEANS OF FRACTIONAL DERIVATIVE MODEL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VERIFICATION%20OF%20LOCAL%20KRAMERS%E2%80%93KRONIG%20RELATIONS%20FOR%20COMPLEX%20MODULUS%20BY%20MEANS%20OF%20FRACTIONAL%20DERIVATIVE%20MODEL&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=PRITZ,%20T.&rft.date=1999-12-16&rft.volume=228&rft.issue=5&rft.spage=1145&rft.epage=1165&rft.pages=1145-1165&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1006/jsvi.1999.2495&rft_dat=%3Celsevier_cross%3ES0022460X99924951%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022460X99924951&rfr_iscdi=true |