DYNAMICS OF A FLEXIBLE BEAM CARRYING A MOVING MASS USING PERTURBATION, NUMERICAL AND TIME-FREQUENCY ANALYSIS TECHNIQUES

The dynamic behaviour of a flexible cantilever beam carrying a moving mass-spring is investigated. This system is an idealization of an important class of problems that are characterized by interaction between a continuously distributed mass and stiffness sub-system (the beam), and a lumped mass and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2000-02, Vol.229 (5), p.1023-1055
Hauptverfasser: SIDDIQUI, S.A.Q., GOLNARAGHI, M.F., HEPPLER, G.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1055
container_issue 5
container_start_page 1023
container_title Journal of sound and vibration
container_volume 229
creator SIDDIQUI, S.A.Q.
GOLNARAGHI, M.F.
HEPPLER, G.R.
description The dynamic behaviour of a flexible cantilever beam carrying a moving mass-spring is investigated. This system is an idealization of an important class of problems that are characterized by interaction between a continuously distributed mass and stiffness sub-system (the beam), and a lumped mass and stiffness sub-system (the moving mass-spring). Inertial non-linearities form the coupling between the two, resulting in internal resonance behavior under certain parametric conditions. The dynamics of the system are described by coupled non-linear partial differential equations, where the coupling terms have to be evaluated at the position of the moving mass. The equations of motion are solved numerically using the Galerkin method and an automatic ODE solver. The numerical results are compared with a closed-form analytical solution obtained using a perturbation method and a parametric analysis of the system is performed using the perturbation solution. The spectral behavior of the system is investigated using time-frequency analysis.
doi_str_mv 10.1006/jsvi.1999.2449
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jsvi_1999_2449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X99924495</els_id><sourcerecordid>S0022460X99924495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-545caeae3c3b2d422d8b395771c3779b5ec3b2daf8cad4623044886e80e986663</originalsourceid><addsrcrecordid>eNp1UM9PgzAUbowmzunVcw8eZZZSoD12rNtIgCk_zDiRrpSEZW4LXWb87wVn4snT-_K-H-_lA-DRRhMbIe9la87txGaMTTAh7AqMbMRci7oevQYjhDC2iIfWt-DOmC1CiBGHjMDnrEx4HAYZXM0hh_NIrMNpJOBU8BgGPE3LMFn0RLx6H0DMswwW2QBfRZoX6ZTn4Sp5hkkRizQMeAR5MoN5GAtrnoq3QiRB2a94VGZhBnMRLJOw32b34KaRO6MffucYFHORB0srWi2GGEs5tnuyXOIqqaV2lLPBNcG4phuHub5vK8f32cbVP4RsqJI18bCDCKHU0xRpRj3Pc8ZgcslV3cGYTjfVsWs_ZPdV2agaaquG2qqhtmqorTc8XQxHaZTcNZ3cq9b8uTD1sY96Gb3IdP_8udVdZVSr90rXbafVqaoP7X8XvgGhuncs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DYNAMICS OF A FLEXIBLE BEAM CARRYING A MOVING MASS USING PERTURBATION, NUMERICAL AND TIME-FREQUENCY ANALYSIS TECHNIQUES</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>SIDDIQUI, S.A.Q. ; GOLNARAGHI, M.F. ; HEPPLER, G.R.</creator><creatorcontrib>SIDDIQUI, S.A.Q. ; GOLNARAGHI, M.F. ; HEPPLER, G.R.</creatorcontrib><description>The dynamic behaviour of a flexible cantilever beam carrying a moving mass-spring is investigated. This system is an idealization of an important class of problems that are characterized by interaction between a continuously distributed mass and stiffness sub-system (the beam), and a lumped mass and stiffness sub-system (the moving mass-spring). Inertial non-linearities form the coupling between the two, resulting in internal resonance behavior under certain parametric conditions. The dynamics of the system are described by coupled non-linear partial differential equations, where the coupling terms have to be evaluated at the position of the moving mass. The equations of motion are solved numerically using the Galerkin method and an automatic ODE solver. The numerical results are compared with a closed-form analytical solution obtained using a perturbation method and a parametric analysis of the system is performed using the perturbation solution. The spectral behavior of the system is investigated using time-frequency analysis.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1006/jsvi.1999.2449</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Numerical approximation and analysis ; Ordinary and partial differential equations, boundary value problems ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Structural mechanics (beam, string...) ; Theory and numerical methods</subject><ispartof>Journal of sound and vibration, 2000-02, Vol.229 (5), p.1023-1055</ispartof><rights>2000 Academic Press</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-545caeae3c3b2d422d8b395771c3779b5ec3b2daf8cad4623044886e80e986663</citedby><cites>FETCH-LOGICAL-c315t-545caeae3c3b2d422d8b395771c3779b5ec3b2daf8cad4623044886e80e986663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jsvi.1999.2449$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1287270$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SIDDIQUI, S.A.Q.</creatorcontrib><creatorcontrib>GOLNARAGHI, M.F.</creatorcontrib><creatorcontrib>HEPPLER, G.R.</creatorcontrib><title>DYNAMICS OF A FLEXIBLE BEAM CARRYING A MOVING MASS USING PERTURBATION, NUMERICAL AND TIME-FREQUENCY ANALYSIS TECHNIQUES</title><title>Journal of sound and vibration</title><description>The dynamic behaviour of a flexible cantilever beam carrying a moving mass-spring is investigated. This system is an idealization of an important class of problems that are characterized by interaction between a continuously distributed mass and stiffness sub-system (the beam), and a lumped mass and stiffness sub-system (the moving mass-spring). Inertial non-linearities form the coupling between the two, resulting in internal resonance behavior under certain parametric conditions. The dynamics of the system are described by coupled non-linear partial differential equations, where the coupling terms have to be evaluated at the position of the moving mass. The equations of motion are solved numerically using the Galerkin method and an automatic ODE solver. The numerical results are compared with a closed-form analytical solution obtained using a perturbation method and a parametric analysis of the system is performed using the perturbation solution. The spectral behavior of the system is investigated using time-frequency analysis.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Ordinary and partial differential equations, boundary value problems</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Structural mechanics (beam, string...)</subject><subject>Theory and numerical methods</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1UM9PgzAUbowmzunVcw8eZZZSoD12rNtIgCk_zDiRrpSEZW4LXWb87wVn4snT-_K-H-_lA-DRRhMbIe9la87txGaMTTAh7AqMbMRci7oevQYjhDC2iIfWt-DOmC1CiBGHjMDnrEx4HAYZXM0hh_NIrMNpJOBU8BgGPE3LMFn0RLx6H0DMswwW2QBfRZoX6ZTn4Sp5hkkRizQMeAR5MoN5GAtrnoq3QiRB2a94VGZhBnMRLJOw32b34KaRO6MffucYFHORB0srWi2GGEs5tnuyXOIqqaV2lLPBNcG4phuHub5vK8f32cbVP4RsqJI18bCDCKHU0xRpRj3Pc8ZgcslV3cGYTjfVsWs_ZPdV2agaaquG2qqhtmqorTc8XQxHaZTcNZ3cq9b8uTD1sY96Gb3IdP_8udVdZVSr90rXbafVqaoP7X8XvgGhuncs</recordid><startdate>20000203</startdate><enddate>20000203</enddate><creator>SIDDIQUI, S.A.Q.</creator><creator>GOLNARAGHI, M.F.</creator><creator>HEPPLER, G.R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000203</creationdate><title>DYNAMICS OF A FLEXIBLE BEAM CARRYING A MOVING MASS USING PERTURBATION, NUMERICAL AND TIME-FREQUENCY ANALYSIS TECHNIQUES</title><author>SIDDIQUI, S.A.Q. ; GOLNARAGHI, M.F. ; HEPPLER, G.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-545caeae3c3b2d422d8b395771c3779b5ec3b2daf8cad4623044886e80e986663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Ordinary and partial differential equations, boundary value problems</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Structural mechanics (beam, string...)</topic><topic>Theory and numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SIDDIQUI, S.A.Q.</creatorcontrib><creatorcontrib>GOLNARAGHI, M.F.</creatorcontrib><creatorcontrib>HEPPLER, G.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SIDDIQUI, S.A.Q.</au><au>GOLNARAGHI, M.F.</au><au>HEPPLER, G.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DYNAMICS OF A FLEXIBLE BEAM CARRYING A MOVING MASS USING PERTURBATION, NUMERICAL AND TIME-FREQUENCY ANALYSIS TECHNIQUES</atitle><jtitle>Journal of sound and vibration</jtitle><date>2000-02-03</date><risdate>2000</risdate><volume>229</volume><issue>5</issue><spage>1023</spage><epage>1055</epage><pages>1023-1055</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>The dynamic behaviour of a flexible cantilever beam carrying a moving mass-spring is investigated. This system is an idealization of an important class of problems that are characterized by interaction between a continuously distributed mass and stiffness sub-system (the beam), and a lumped mass and stiffness sub-system (the moving mass-spring). Inertial non-linearities form the coupling between the two, resulting in internal resonance behavior under certain parametric conditions. The dynamics of the system are described by coupled non-linear partial differential equations, where the coupling terms have to be evaluated at the position of the moving mass. The equations of motion are solved numerically using the Galerkin method and an automatic ODE solver. The numerical results are compared with a closed-form analytical solution obtained using a perturbation method and a parametric analysis of the system is performed using the perturbation solution. The spectral behavior of the system is investigated using time-frequency analysis.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1006/jsvi.1999.2449</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2000-02, Vol.229 (5), p.1023-1055
issn 0022-460X
1095-8568
language eng
recordid cdi_crossref_primary_10_1006_jsvi_1999_2449
source ScienceDirect Journals (5 years ago - present)
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Numerical approximation and analysis
Ordinary and partial differential equations, boundary value problems
Physics
Solid mechanics
Structural and continuum mechanics
Structural mechanics (beam, string...)
Theory and numerical methods
title DYNAMICS OF A FLEXIBLE BEAM CARRYING A MOVING MASS USING PERTURBATION, NUMERICAL AND TIME-FREQUENCY ANALYSIS TECHNIQUES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DYNAMICS%20OF%20A%20FLEXIBLE%20BEAM%20CARRYING%20A%20MOVING%20MASS%20USING%20PERTURBATION,%20NUMERICAL%20AND%20TIME-FREQUENCY%20ANALYSIS%20TECHNIQUES&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=SIDDIQUI,%20S.A.Q.&rft.date=2000-02-03&rft.volume=229&rft.issue=5&rft.spage=1023&rft.epage=1055&rft.pages=1023-1055&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1006/jsvi.1999.2449&rft_dat=%3Celsevier_cross%3ES0022460X99924495%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022460X99924495&rfr_iscdi=true