Stability of Rare-Earth Oxychloride Phases: Bond Valence Study
The crystal structures of the tetragonal rare earth (RE) oxychlorides, REOCl (RE=La–Nd, Sm–Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P4/nmm, No. 129, Z=2) is stable for all but Er–Lu oxych...
Gespeichert in:
Veröffentlicht in: | Journal of solid state chemistry 2002-04, Vol.165 (1), p.48-55 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 1 |
container_start_page | 48 |
container_title | Journal of solid state chemistry |
container_volume | 165 |
creator | Hölsä, Jorma Lahtinen, Manu Lastusaari, Mika Valkonen, Jussi Viljanen, Jussi |
description | The crystal structures of the tetragonal rare earth (RE) oxychlorides, REOCl (RE=La–Nd, Sm–Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P4/nmm, No. 129, Z=2) is stable for all but Er–Lu oxychlorides, which possess a hexagonal structure. The tetragonal structure consists of alternating layers of (REO)nn+ complex cations and Xn− anions, where the rare earth is coordinated to four oxygens and four plus one chlorines in a monocapped tetragonal antiprism arrangement. The Rietveld analyses yielded a coherent series of structural parameters. Preferred orientation and microabsorption effects were found significant. The evolution of interatomic distances and bond angles indicated that the reason for the preferred structure changing from tetragonal to hexagonal is the strain in the chlorine layer. The bond valence parameter B for the RE–O bonds had to be recalculated due to the covalent nature of the (REO)nn+ unit. The results obtained with the new parameter confirmed the strains in the chlorine layer to be the cause for the phase transition. |
doi_str_mv | 10.1006/jssc.2001.9491 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jssc_2001_9491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022459601994915</els_id><sourcerecordid>S0022459601994915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9f1ee993c95435b5bb5a2afc7febb30dfca8f9a72cb7530ba8939e80325774273</originalsourceid><addsrcrecordid>eNp1j81LwzAYxoMoOKdXz7l4bM1H0zQeBB3zAwYTp-ItvEkTllHXkVSx_70rFTx5ei_P73neH0LnlOSUkPJyk5LNGSE0V4WiB2hCiRKZZOX7IZoQwlhWCFUeo5OUNvsUFVUxQderDkxoQtfj1uNniC6bQ-zWePnd23XTxlA7_LSG5NIVvm23NX6Dxm2tw6vus-5P0ZGHJrmz3ztFr3fzl9lDtljeP85uFpnlFesy5alzSnGrRMGFEcYIYOCt9M4YTmpvofIKJLNGCk4MVIorVxHOhJQFk3yK8rHXxjal6LzexfABsdeU6MFeD_Z6sNeD_R64GIEdJAuNj7C1If1RvCxpKYfiasy5_fdfwUWdbBj86hCd7XTdhv8mfgAXKm3C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability of Rare-Earth Oxychloride Phases: Bond Valence Study</title><source>Elsevier ScienceDirect Journals</source><creator>Hölsä, Jorma ; Lahtinen, Manu ; Lastusaari, Mika ; Valkonen, Jussi ; Viljanen, Jussi</creator><creatorcontrib>Hölsä, Jorma ; Lahtinen, Manu ; Lastusaari, Mika ; Valkonen, Jussi ; Viljanen, Jussi</creatorcontrib><description>The crystal structures of the tetragonal rare earth (RE) oxychlorides, REOCl (RE=La–Nd, Sm–Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P4/nmm, No. 129, Z=2) is stable for all but Er–Lu oxychlorides, which possess a hexagonal structure. The tetragonal structure consists of alternating layers of (REO)nn+ complex cations and Xn− anions, where the rare earth is coordinated to four oxygens and four plus one chlorines in a monocapped tetragonal antiprism arrangement. The Rietveld analyses yielded a coherent series of structural parameters. Preferred orientation and microabsorption effects were found significant. The evolution of interatomic distances and bond angles indicated that the reason for the preferred structure changing from tetragonal to hexagonal is the strain in the chlorine layer. The bond valence parameter B for the RE–O bonds had to be recalculated due to the covalent nature of the (REO)nn+ unit. The results obtained with the new parameter confirmed the strains in the chlorine layer to be the cause for the phase transition.</description><identifier>ISSN: 0022-4596</identifier><identifier>EISSN: 1095-726X</identifier><identifier>DOI: 10.1006/jssc.2001.9491</identifier><identifier>CODEN: JSSCBI</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>bond valence ; Condensed matter: structure, mechanical and thermal properties ; Crystalline state (including molecular motions in solids) ; Crystallographic aspects of phase transformations; pressure effects ; Exact sciences and technology ; Halides, chalcogenides and analogous compounds of group vb ; Inorganic compounds ; phase transition ; Physics ; rare-earth oxychlorides ; Rietveld analysis ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; X-ray powder diffraction</subject><ispartof>Journal of solid state chemistry, 2002-04, Vol.165 (1), p.48-55</ispartof><rights>2002 Elsevier Science (USA)</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9f1ee993c95435b5bb5a2afc7febb30dfca8f9a72cb7530ba8939e80325774273</citedby><cites>FETCH-LOGICAL-c382t-9f1ee993c95435b5bb5a2afc7febb30dfca8f9a72cb7530ba8939e80325774273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022459601994915$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13661677$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hölsä, Jorma</creatorcontrib><creatorcontrib>Lahtinen, Manu</creatorcontrib><creatorcontrib>Lastusaari, Mika</creatorcontrib><creatorcontrib>Valkonen, Jussi</creatorcontrib><creatorcontrib>Viljanen, Jussi</creatorcontrib><title>Stability of Rare-Earth Oxychloride Phases: Bond Valence Study</title><title>Journal of solid state chemistry</title><description>The crystal structures of the tetragonal rare earth (RE) oxychlorides, REOCl (RE=La–Nd, Sm–Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P4/nmm, No. 129, Z=2) is stable for all but Er–Lu oxychlorides, which possess a hexagonal structure. The tetragonal structure consists of alternating layers of (REO)nn+ complex cations and Xn− anions, where the rare earth is coordinated to four oxygens and four plus one chlorines in a monocapped tetragonal antiprism arrangement. The Rietveld analyses yielded a coherent series of structural parameters. Preferred orientation and microabsorption effects were found significant. The evolution of interatomic distances and bond angles indicated that the reason for the preferred structure changing from tetragonal to hexagonal is the strain in the chlorine layer. The bond valence parameter B for the RE–O bonds had to be recalculated due to the covalent nature of the (REO)nn+ unit. The results obtained with the new parameter confirmed the strains in the chlorine layer to be the cause for the phase transition.</description><subject>bond valence</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crystalline state (including molecular motions in solids)</subject><subject>Crystallographic aspects of phase transformations; pressure effects</subject><subject>Exact sciences and technology</subject><subject>Halides, chalcogenides and analogous compounds of group vb</subject><subject>Inorganic compounds</subject><subject>phase transition</subject><subject>Physics</subject><subject>rare-earth oxychlorides</subject><subject>Rietveld analysis</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>X-ray powder diffraction</subject><issn>0022-4596</issn><issn>1095-726X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1j81LwzAYxoMoOKdXz7l4bM1H0zQeBB3zAwYTp-ItvEkTllHXkVSx_70rFTx5ei_P73neH0LnlOSUkPJyk5LNGSE0V4WiB2hCiRKZZOX7IZoQwlhWCFUeo5OUNvsUFVUxQderDkxoQtfj1uNniC6bQ-zWePnd23XTxlA7_LSG5NIVvm23NX6Dxm2tw6vus-5P0ZGHJrmz3ztFr3fzl9lDtljeP85uFpnlFesy5alzSnGrRMGFEcYIYOCt9M4YTmpvofIKJLNGCk4MVIorVxHOhJQFk3yK8rHXxjal6LzexfABsdeU6MFeD_Z6sNeD_R64GIEdJAuNj7C1If1RvCxpKYfiasy5_fdfwUWdbBj86hCd7XTdhv8mfgAXKm3C</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Hölsä, Jorma</creator><creator>Lahtinen, Manu</creator><creator>Lastusaari, Mika</creator><creator>Valkonen, Jussi</creator><creator>Viljanen, Jussi</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020401</creationdate><title>Stability of Rare-Earth Oxychloride Phases: Bond Valence Study</title><author>Hölsä, Jorma ; Lahtinen, Manu ; Lastusaari, Mika ; Valkonen, Jussi ; Viljanen, Jussi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9f1ee993c95435b5bb5a2afc7febb30dfca8f9a72cb7530ba8939e80325774273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>bond valence</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crystalline state (including molecular motions in solids)</topic><topic>Crystallographic aspects of phase transformations; pressure effects</topic><topic>Exact sciences and technology</topic><topic>Halides, chalcogenides and analogous compounds of group vb</topic><topic>Inorganic compounds</topic><topic>phase transition</topic><topic>Physics</topic><topic>rare-earth oxychlorides</topic><topic>Rietveld analysis</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>X-ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hölsä, Jorma</creatorcontrib><creatorcontrib>Lahtinen, Manu</creatorcontrib><creatorcontrib>Lastusaari, Mika</creatorcontrib><creatorcontrib>Valkonen, Jussi</creatorcontrib><creatorcontrib>Viljanen, Jussi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of solid state chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hölsä, Jorma</au><au>Lahtinen, Manu</au><au>Lastusaari, Mika</au><au>Valkonen, Jussi</au><au>Viljanen, Jussi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Rare-Earth Oxychloride Phases: Bond Valence Study</atitle><jtitle>Journal of solid state chemistry</jtitle><date>2002-04-01</date><risdate>2002</risdate><volume>165</volume><issue>1</issue><spage>48</spage><epage>55</epage><pages>48-55</pages><issn>0022-4596</issn><eissn>1095-726X</eissn><coden>JSSCBI</coden><abstract>The crystal structures of the tetragonal rare earth (RE) oxychlorides, REOCl (RE=La–Nd, Sm–Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P4/nmm, No. 129, Z=2) is stable for all but Er–Lu oxychlorides, which possess a hexagonal structure. The tetragonal structure consists of alternating layers of (REO)nn+ complex cations and Xn− anions, where the rare earth is coordinated to four oxygens and four plus one chlorines in a monocapped tetragonal antiprism arrangement. The Rietveld analyses yielded a coherent series of structural parameters. Preferred orientation and microabsorption effects were found significant. The evolution of interatomic distances and bond angles indicated that the reason for the preferred structure changing from tetragonal to hexagonal is the strain in the chlorine layer. The bond valence parameter B for the RE–O bonds had to be recalculated due to the covalent nature of the (REO)nn+ unit. The results obtained with the new parameter confirmed the strains in the chlorine layer to be the cause for the phase transition.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jssc.2001.9491</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4596 |
ispartof | Journal of solid state chemistry, 2002-04, Vol.165 (1), p.48-55 |
issn | 0022-4596 1095-726X |
language | eng |
recordid | cdi_crossref_primary_10_1006_jssc_2001_9491 |
source | Elsevier ScienceDirect Journals |
subjects | bond valence Condensed matter: structure, mechanical and thermal properties Crystalline state (including molecular motions in solids) Crystallographic aspects of phase transformations pressure effects Exact sciences and technology Halides, chalcogenides and analogous compounds of group vb Inorganic compounds phase transition Physics rare-earth oxychlorides Rietveld analysis Structure of solids and liquids crystallography Structure of specific crystalline solids X-ray powder diffraction |
title | Stability of Rare-Earth Oxychloride Phases: Bond Valence Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Rare-Earth%20Oxychloride%20Phases:%20Bond%20Valence%20Study&rft.jtitle=Journal%20of%20solid%20state%20chemistry&rft.au=H%C3%B6ls%C3%A4,%20Jorma&rft.date=2002-04-01&rft.volume=165&rft.issue=1&rft.spage=48&rft.epage=55&rft.pages=48-55&rft.issn=0022-4596&rft.eissn=1095-726X&rft.coden=JSSCBI&rft_id=info:doi/10.1006/jssc.2001.9491&rft_dat=%3Celsevier_cross%3ES0022459601994915%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022459601994915&rfr_iscdi=true |