Stability of Rare-Earth Oxychloride Phases: Bond Valence Study

The crystal structures of the tetragonal rare earth (RE) oxychlorides, REOCl (RE=La–Nd, Sm–Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P4/nmm, No. 129, Z=2) is stable for all but Er–Lu oxych...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state chemistry 2002-04, Vol.165 (1), p.48-55
Hauptverfasser: Hölsä, Jorma, Lahtinen, Manu, Lastusaari, Mika, Valkonen, Jussi, Viljanen, Jussi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 48
container_title Journal of solid state chemistry
container_volume 165
creator Hölsä, Jorma
Lahtinen, Manu
Lastusaari, Mika
Valkonen, Jussi
Viljanen, Jussi
description The crystal structures of the tetragonal rare earth (RE) oxychlorides, REOCl (RE=La–Nd, Sm–Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P4/nmm, No. 129, Z=2) is stable for all but Er–Lu oxychlorides, which possess a hexagonal structure. The tetragonal structure consists of alternating layers of (REO)nn+ complex cations and Xn− anions, where the rare earth is coordinated to four oxygens and four plus one chlorines in a monocapped tetragonal antiprism arrangement. The Rietveld analyses yielded a coherent series of structural parameters. Preferred orientation and microabsorption effects were found significant. The evolution of interatomic distances and bond angles indicated that the reason for the preferred structure changing from tetragonal to hexagonal is the strain in the chlorine layer. The bond valence parameter B for the RE–O bonds had to be recalculated due to the covalent nature of the (REO)nn+ unit. The results obtained with the new parameter confirmed the strains in the chlorine layer to be the cause for the phase transition.
doi_str_mv 10.1006/jssc.2001.9491
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jssc_2001_9491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022459601994915</els_id><sourcerecordid>S0022459601994915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9f1ee993c95435b5bb5a2afc7febb30dfca8f9a72cb7530ba8939e80325774273</originalsourceid><addsrcrecordid>eNp1j81LwzAYxoMoOKdXz7l4bM1H0zQeBB3zAwYTp-ItvEkTllHXkVSx_70rFTx5ei_P73neH0LnlOSUkPJyk5LNGSE0V4WiB2hCiRKZZOX7IZoQwlhWCFUeo5OUNvsUFVUxQderDkxoQtfj1uNniC6bQ-zWePnd23XTxlA7_LSG5NIVvm23NX6Dxm2tw6vus-5P0ZGHJrmz3ztFr3fzl9lDtljeP85uFpnlFesy5alzSnGrRMGFEcYIYOCt9M4YTmpvofIKJLNGCk4MVIorVxHOhJQFk3yK8rHXxjal6LzexfABsdeU6MFeD_Z6sNeD_R64GIEdJAuNj7C1If1RvCxpKYfiasy5_fdfwUWdbBj86hCd7XTdhv8mfgAXKm3C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability of Rare-Earth Oxychloride Phases: Bond Valence Study</title><source>Elsevier ScienceDirect Journals</source><creator>Hölsä, Jorma ; Lahtinen, Manu ; Lastusaari, Mika ; Valkonen, Jussi ; Viljanen, Jussi</creator><creatorcontrib>Hölsä, Jorma ; Lahtinen, Manu ; Lastusaari, Mika ; Valkonen, Jussi ; Viljanen, Jussi</creatorcontrib><description>The crystal structures of the tetragonal rare earth (RE) oxychlorides, REOCl (RE=La–Nd, Sm–Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P4/nmm, No. 129, Z=2) is stable for all but Er–Lu oxychlorides, which possess a hexagonal structure. The tetragonal structure consists of alternating layers of (REO)nn+ complex cations and Xn− anions, where the rare earth is coordinated to four oxygens and four plus one chlorines in a monocapped tetragonal antiprism arrangement. The Rietveld analyses yielded a coherent series of structural parameters. Preferred orientation and microabsorption effects were found significant. The evolution of interatomic distances and bond angles indicated that the reason for the preferred structure changing from tetragonal to hexagonal is the strain in the chlorine layer. The bond valence parameter B for the RE–O bonds had to be recalculated due to the covalent nature of the (REO)nn+ unit. The results obtained with the new parameter confirmed the strains in the chlorine layer to be the cause for the phase transition.</description><identifier>ISSN: 0022-4596</identifier><identifier>EISSN: 1095-726X</identifier><identifier>DOI: 10.1006/jssc.2001.9491</identifier><identifier>CODEN: JSSCBI</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>bond valence ; Condensed matter: structure, mechanical and thermal properties ; Crystalline state (including molecular motions in solids) ; Crystallographic aspects of phase transformations; pressure effects ; Exact sciences and technology ; Halides, chalcogenides and analogous compounds of group vb ; Inorganic compounds ; phase transition ; Physics ; rare-earth oxychlorides ; Rietveld analysis ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; X-ray powder diffraction</subject><ispartof>Journal of solid state chemistry, 2002-04, Vol.165 (1), p.48-55</ispartof><rights>2002 Elsevier Science (USA)</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9f1ee993c95435b5bb5a2afc7febb30dfca8f9a72cb7530ba8939e80325774273</citedby><cites>FETCH-LOGICAL-c382t-9f1ee993c95435b5bb5a2afc7febb30dfca8f9a72cb7530ba8939e80325774273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022459601994915$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13661677$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hölsä, Jorma</creatorcontrib><creatorcontrib>Lahtinen, Manu</creatorcontrib><creatorcontrib>Lastusaari, Mika</creatorcontrib><creatorcontrib>Valkonen, Jussi</creatorcontrib><creatorcontrib>Viljanen, Jussi</creatorcontrib><title>Stability of Rare-Earth Oxychloride Phases: Bond Valence Study</title><title>Journal of solid state chemistry</title><description>The crystal structures of the tetragonal rare earth (RE) oxychlorides, REOCl (RE=La–Nd, Sm–Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P4/nmm, No. 129, Z=2) is stable for all but Er–Lu oxychlorides, which possess a hexagonal structure. The tetragonal structure consists of alternating layers of (REO)nn+ complex cations and Xn− anions, where the rare earth is coordinated to four oxygens and four plus one chlorines in a monocapped tetragonal antiprism arrangement. The Rietveld analyses yielded a coherent series of structural parameters. Preferred orientation and microabsorption effects were found significant. The evolution of interatomic distances and bond angles indicated that the reason for the preferred structure changing from tetragonal to hexagonal is the strain in the chlorine layer. The bond valence parameter B for the RE–O bonds had to be recalculated due to the covalent nature of the (REO)nn+ unit. The results obtained with the new parameter confirmed the strains in the chlorine layer to be the cause for the phase transition.</description><subject>bond valence</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crystalline state (including molecular motions in solids)</subject><subject>Crystallographic aspects of phase transformations; pressure effects</subject><subject>Exact sciences and technology</subject><subject>Halides, chalcogenides and analogous compounds of group vb</subject><subject>Inorganic compounds</subject><subject>phase transition</subject><subject>Physics</subject><subject>rare-earth oxychlorides</subject><subject>Rietveld analysis</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>X-ray powder diffraction</subject><issn>0022-4596</issn><issn>1095-726X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1j81LwzAYxoMoOKdXz7l4bM1H0zQeBB3zAwYTp-ItvEkTllHXkVSx_70rFTx5ei_P73neH0LnlOSUkPJyk5LNGSE0V4WiB2hCiRKZZOX7IZoQwlhWCFUeo5OUNvsUFVUxQderDkxoQtfj1uNniC6bQ-zWePnd23XTxlA7_LSG5NIVvm23NX6Dxm2tw6vus-5P0ZGHJrmz3ztFr3fzl9lDtljeP85uFpnlFesy5alzSnGrRMGFEcYIYOCt9M4YTmpvofIKJLNGCk4MVIorVxHOhJQFk3yK8rHXxjal6LzexfABsdeU6MFeD_Z6sNeD_R64GIEdJAuNj7C1If1RvCxpKYfiasy5_fdfwUWdbBj86hCd7XTdhv8mfgAXKm3C</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Hölsä, Jorma</creator><creator>Lahtinen, Manu</creator><creator>Lastusaari, Mika</creator><creator>Valkonen, Jussi</creator><creator>Viljanen, Jussi</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020401</creationdate><title>Stability of Rare-Earth Oxychloride Phases: Bond Valence Study</title><author>Hölsä, Jorma ; Lahtinen, Manu ; Lastusaari, Mika ; Valkonen, Jussi ; Viljanen, Jussi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9f1ee993c95435b5bb5a2afc7febb30dfca8f9a72cb7530ba8939e80325774273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>bond valence</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crystalline state (including molecular motions in solids)</topic><topic>Crystallographic aspects of phase transformations; pressure effects</topic><topic>Exact sciences and technology</topic><topic>Halides, chalcogenides and analogous compounds of group vb</topic><topic>Inorganic compounds</topic><topic>phase transition</topic><topic>Physics</topic><topic>rare-earth oxychlorides</topic><topic>Rietveld analysis</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>X-ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hölsä, Jorma</creatorcontrib><creatorcontrib>Lahtinen, Manu</creatorcontrib><creatorcontrib>Lastusaari, Mika</creatorcontrib><creatorcontrib>Valkonen, Jussi</creatorcontrib><creatorcontrib>Viljanen, Jussi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of solid state chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hölsä, Jorma</au><au>Lahtinen, Manu</au><au>Lastusaari, Mika</au><au>Valkonen, Jussi</au><au>Viljanen, Jussi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Rare-Earth Oxychloride Phases: Bond Valence Study</atitle><jtitle>Journal of solid state chemistry</jtitle><date>2002-04-01</date><risdate>2002</risdate><volume>165</volume><issue>1</issue><spage>48</spage><epage>55</epage><pages>48-55</pages><issn>0022-4596</issn><eissn>1095-726X</eissn><coden>JSSCBI</coden><abstract>The crystal structures of the tetragonal rare earth (RE) oxychlorides, REOCl (RE=La–Nd, Sm–Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P4/nmm, No. 129, Z=2) is stable for all but Er–Lu oxychlorides, which possess a hexagonal structure. The tetragonal structure consists of alternating layers of (REO)nn+ complex cations and Xn− anions, where the rare earth is coordinated to four oxygens and four plus one chlorines in a monocapped tetragonal antiprism arrangement. The Rietveld analyses yielded a coherent series of structural parameters. Preferred orientation and microabsorption effects were found significant. The evolution of interatomic distances and bond angles indicated that the reason for the preferred structure changing from tetragonal to hexagonal is the strain in the chlorine layer. The bond valence parameter B for the RE–O bonds had to be recalculated due to the covalent nature of the (REO)nn+ unit. The results obtained with the new parameter confirmed the strains in the chlorine layer to be the cause for the phase transition.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jssc.2001.9491</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4596
ispartof Journal of solid state chemistry, 2002-04, Vol.165 (1), p.48-55
issn 0022-4596
1095-726X
language eng
recordid cdi_crossref_primary_10_1006_jssc_2001_9491
source Elsevier ScienceDirect Journals
subjects bond valence
Condensed matter: structure, mechanical and thermal properties
Crystalline state (including molecular motions in solids)
Crystallographic aspects of phase transformations
pressure effects
Exact sciences and technology
Halides, chalcogenides and analogous compounds of group vb
Inorganic compounds
phase transition
Physics
rare-earth oxychlorides
Rietveld analysis
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
X-ray powder diffraction
title Stability of Rare-Earth Oxychloride Phases: Bond Valence Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Rare-Earth%20Oxychloride%20Phases:%20Bond%20Valence%20Study&rft.jtitle=Journal%20of%20solid%20state%20chemistry&rft.au=H%C3%B6ls%C3%A4,%20Jorma&rft.date=2002-04-01&rft.volume=165&rft.issue=1&rft.spage=48&rft.epage=55&rft.pages=48-55&rft.issn=0022-4596&rft.eissn=1095-726X&rft.coden=JSSCBI&rft_id=info:doi/10.1006/jssc.2001.9491&rft_dat=%3Celsevier_cross%3ES0022459601994915%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022459601994915&rfr_iscdi=true