On-Line Routing of Real-Time Messages
The problem of routing unit-length, real-time messages in a distributed system is considered. An on-line routing algorithm is one that routes messages without any knowledge of future arrivals of messages. An on-line algorithm is said to be optimal if it produces a feasible route whenever one exists....
Gespeichert in:
Veröffentlicht in: | Journal of parallel and distributed computing 1996-05, Vol.34 (2), p.211-217 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 217 |
---|---|
container_issue | 2 |
container_start_page | 211 |
container_title | Journal of parallel and distributed computing |
container_volume | 34 |
creator | Leung, Joseph Y-T. Tam, Tommy W. Young, Gilbert H. |
description | The problem of routing unit-length, real-time messages in a distributed system is considered. An on-line routing algorithm is one that routes messages without any knowledge of future arrivals of messages. An on-line algorithm is said to be optimal if it produces a feasible route whenever one exists. In this article, we study the issue whether it is possible to have an optimal on-line algorithm for the following networks—unidirectional ring, out-tree, in-tree, bidirectional tree, and bidirectional ring. The problem is considered under various restrictions of the four parameters—origin node, destination node, release time, and deadline. We show that: (1) for a unidirectional ring, no such algorithm can exist unless one of the four parameters is fixed (i.e., all messages have identical values for that parameter); (2) for an out-tree, no such algorithm can exist unless one of the three parameters—origin node, destination node, and release time—is fixed; (3) For an in-tree, no such algorithm can exist unless one of the three parameters—origin node, destination node, and deadline —is fixed; (4) for a bidirectional tree, no such algorithm can exist unless the origin node or the destination node is fixed; (5) for a bidirectional ring, no such algorithm can exist unless the origin node and either the destination node or the release time are fixed. Our results give a sharp boundary delineating those instances for which an optimal algorithm exists and those for which no such algorithm can exist. |
doi_str_mv | 10.1006/jpdc.1996.0057 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jpdc_1996_0057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S074373159690057X</els_id><sourcerecordid>S074373159690057X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-19a453cca9deed55664878b5e33e15edc629a229587293398f96d43248656d893</originalsourceid><addsrcrecordid>eNp1j01LAzEURYMoWKtb17PQZca8yfdSilahUih1HWLypqS0MyWpgv_eGSruXL3NPfe-Q8gtsBoYUw_bQww1WKtqxqQ-IxNgVlFmhDknE6YFp5qDvCRXpWwZA5DaTMj9sqOL1GG16j-PqdtUfVut0O_oOu2xesNS_AbLNblo_a7gze-dkvfnp_XshS6W89fZ44KGoflIwXoheQjeRsQopVLCaPMhkXMEiTGoxvqmsdLoxnJuTWtVFLwRRkkVjeVTUp96Q-5Lydi6Q057n78dMDdKulHSjZJulByAuxNw8CX4XZt9F1L5ozgACM2HmDnFcHj-K2F2JSTsAsaUMRxd7NN_Cz8ekmJm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On-Line Routing of Real-Time Messages</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Leung, Joseph Y-T. ; Tam, Tommy W. ; Young, Gilbert H.</creator><creatorcontrib>Leung, Joseph Y-T. ; Tam, Tommy W. ; Young, Gilbert H.</creatorcontrib><description>The problem of routing unit-length, real-time messages in a distributed system is considered. An on-line routing algorithm is one that routes messages without any knowledge of future arrivals of messages. An on-line algorithm is said to be optimal if it produces a feasible route whenever one exists. In this article, we study the issue whether it is possible to have an optimal on-line algorithm for the following networks—unidirectional ring, out-tree, in-tree, bidirectional tree, and bidirectional ring. The problem is considered under various restrictions of the four parameters—origin node, destination node, release time, and deadline. We show that: (1) for a unidirectional ring, no such algorithm can exist unless one of the four parameters is fixed (i.e., all messages have identical values for that parameter); (2) for an out-tree, no such algorithm can exist unless one of the three parameters—origin node, destination node, and release time—is fixed; (3) For an in-tree, no such algorithm can exist unless one of the three parameters—origin node, destination node, and deadline —is fixed; (4) for a bidirectional tree, no such algorithm can exist unless the origin node or the destination node is fixed; (5) for a bidirectional ring, no such algorithm can exist unless the origin node and either the destination node or the release time are fixed. Our results give a sharp boundary delineating those instances for which an optimal algorithm exists and those for which no such algorithm can exist.</description><identifier>ISSN: 0743-7315</identifier><identifier>EISSN: 1096-0848</identifier><identifier>DOI: 10.1006/jpdc.1996.0057</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Access methods and protocols, osi model ; Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Interconnected networks ; Networks and services in france and abroad ; Software ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn</subject><ispartof>Journal of parallel and distributed computing, 1996-05, Vol.34 (2), p.211-217</ispartof><rights>1996 Academic Press</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-19a453cca9deed55664878b5e33e15edc629a229587293398f96d43248656d893</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jpdc.1996.0057$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3111473$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Leung, Joseph Y-T.</creatorcontrib><creatorcontrib>Tam, Tommy W.</creatorcontrib><creatorcontrib>Young, Gilbert H.</creatorcontrib><title>On-Line Routing of Real-Time Messages</title><title>Journal of parallel and distributed computing</title><description>The problem of routing unit-length, real-time messages in a distributed system is considered. An on-line routing algorithm is one that routes messages without any knowledge of future arrivals of messages. An on-line algorithm is said to be optimal if it produces a feasible route whenever one exists. In this article, we study the issue whether it is possible to have an optimal on-line algorithm for the following networks—unidirectional ring, out-tree, in-tree, bidirectional tree, and bidirectional ring. The problem is considered under various restrictions of the four parameters—origin node, destination node, release time, and deadline. We show that: (1) for a unidirectional ring, no such algorithm can exist unless one of the four parameters is fixed (i.e., all messages have identical values for that parameter); (2) for an out-tree, no such algorithm can exist unless one of the three parameters—origin node, destination node, and release time—is fixed; (3) For an in-tree, no such algorithm can exist unless one of the three parameters—origin node, destination node, and deadline —is fixed; (4) for a bidirectional tree, no such algorithm can exist unless the origin node or the destination node is fixed; (5) for a bidirectional ring, no such algorithm can exist unless the origin node and either the destination node or the release time are fixed. Our results give a sharp boundary delineating those instances for which an optimal algorithm exists and those for which no such algorithm can exist.</description><subject>Access methods and protocols, osi model</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Interconnected networks</subject><subject>Networks and services in france and abroad</subject><subject>Software</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><issn>0743-7315</issn><issn>1096-0848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp1j01LAzEURYMoWKtb17PQZca8yfdSilahUih1HWLypqS0MyWpgv_eGSruXL3NPfe-Q8gtsBoYUw_bQww1WKtqxqQ-IxNgVlFmhDknE6YFp5qDvCRXpWwZA5DaTMj9sqOL1GG16j-PqdtUfVut0O_oOu2xesNS_AbLNblo_a7gze-dkvfnp_XshS6W89fZ44KGoflIwXoheQjeRsQopVLCaPMhkXMEiTGoxvqmsdLoxnJuTWtVFLwRRkkVjeVTUp96Q-5Lydi6Q057n78dMDdKulHSjZJulByAuxNw8CX4XZt9F1L5ozgACM2HmDnFcHj-K2F2JSTsAsaUMRxd7NN_Cz8ekmJm</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Leung, Joseph Y-T.</creator><creator>Tam, Tommy W.</creator><creator>Young, Gilbert H.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960501</creationdate><title>On-Line Routing of Real-Time Messages</title><author>Leung, Joseph Y-T. ; Tam, Tommy W. ; Young, Gilbert H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-19a453cca9deed55664878b5e33e15edc629a229587293398f96d43248656d893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Access methods and protocols, osi model</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Interconnected networks</topic><topic>Networks and services in france and abroad</topic><topic>Software</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, Joseph Y-T.</creatorcontrib><creatorcontrib>Tam, Tommy W.</creatorcontrib><creatorcontrib>Young, Gilbert H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of parallel and distributed computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, Joseph Y-T.</au><au>Tam, Tommy W.</au><au>Young, Gilbert H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Line Routing of Real-Time Messages</atitle><jtitle>Journal of parallel and distributed computing</jtitle><date>1996-05-01</date><risdate>1996</risdate><volume>34</volume><issue>2</issue><spage>211</spage><epage>217</epage><pages>211-217</pages><issn>0743-7315</issn><eissn>1096-0848</eissn><abstract>The problem of routing unit-length, real-time messages in a distributed system is considered. An on-line routing algorithm is one that routes messages without any knowledge of future arrivals of messages. An on-line algorithm is said to be optimal if it produces a feasible route whenever one exists. In this article, we study the issue whether it is possible to have an optimal on-line algorithm for the following networks—unidirectional ring, out-tree, in-tree, bidirectional tree, and bidirectional ring. The problem is considered under various restrictions of the four parameters—origin node, destination node, release time, and deadline. We show that: (1) for a unidirectional ring, no such algorithm can exist unless one of the four parameters is fixed (i.e., all messages have identical values for that parameter); (2) for an out-tree, no such algorithm can exist unless one of the three parameters—origin node, destination node, and release time—is fixed; (3) For an in-tree, no such algorithm can exist unless one of the three parameters—origin node, destination node, and deadline —is fixed; (4) for a bidirectional tree, no such algorithm can exist unless the origin node or the destination node is fixed; (5) for a bidirectional ring, no such algorithm can exist unless the origin node and either the destination node or the release time are fixed. Our results give a sharp boundary delineating those instances for which an optimal algorithm exists and those for which no such algorithm can exist.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jpdc.1996.0057</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7315 |
ispartof | Journal of parallel and distributed computing, 1996-05, Vol.34 (2), p.211-217 |
issn | 0743-7315 1096-0848 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jpdc_1996_0057 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Access methods and protocols, osi model Applied sciences Computer science control theory systems Computer systems and distributed systems. User interface Exact sciences and technology Interconnected networks Networks and services in france and abroad Software Telecommunications Telecommunications and information theory Teleprocessing networks. Isdn |
title | On-Line Routing of Real-Time Messages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Line%20Routing%20of%20Real-Time%20Messages&rft.jtitle=Journal%20of%20parallel%20and%20distributed%20computing&rft.au=Leung,%20Joseph%20Y-T.&rft.date=1996-05-01&rft.volume=34&rft.issue=2&rft.spage=211&rft.epage=217&rft.pages=211-217&rft.issn=0743-7315&rft.eissn=1096-0848&rft_id=info:doi/10.1006/jpdc.1996.0057&rft_dat=%3Celsevier_cross%3ES074373159690057X%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S074373159690057X&rfr_iscdi=true |