The Minimal Number of Layers of a Perceptron That Sorts

In this paper we consider the problem of determining the minimal number of layers required by a multilayered perceptron for solving the problem of sorting a set of real-valued numbers. We discuss two formulations of the sorting problem; ABSSORT, which can be considered as the standard form of the so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of parallel and distributed computing 1994-03, Vol.20 (3), p.380-387
Hauptverfasser: Zwietering, P.J., Aarts, E.H.L., Wessels, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 387
container_issue 3
container_start_page 380
container_title Journal of parallel and distributed computing
container_volume 20
creator Zwietering, P.J.
Aarts, E.H.L.
Wessels, J.
description In this paper we consider the problem of determining the minimal number of layers required by a multilayered perceptron for solving the problem of sorting a set of real-valued numbers. We discuss two formulations of the sorting problem; ABSSORT, which can be considered as the standard form of the sorting problem, and for which, given an array of numbers, a new array with the original numbers in ascending order is requested, and RELSORT, for which, given an array of numbers, one wants first to find the smallest number, and then for each number-except the largest-one wants to find the number that comes next in size. We show that, if one uses classical multilayered perceptrons with the hard-limiting response function, the minimal numbers of layers needed are 3 and 2 for solving ABSSORT and RELSORT, respectively.
doi_str_mv 10.1006/jpdc.1994.1034
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jpdc_1994_1034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0743731584710343</els_id><sourcerecordid>S0743731584710343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-e761bc1a6c32b9352303bac1c11fed275165064793901f7a28d16dc1a57d2b0c3</originalsourceid><addsrcrecordid>eNp1j0tPwzAQhC0EEqVw5ZwD1xRv_IqPqOIllYdEOVuOvVFdtUlkB6T-exwVceO0u9J8OzOEXANdAKXydjt4twCteT4ZPyEzoFqWtOb1KZlRxVmpGIhzcpHSllIAoeoZUesNFi-hC3u7K16_9g3Gom-LlT1gTNNmi3eMDocx9l2x3tix-OjjmC7JWWt3Ca9-55x8Ptyvl0_l6u3xeXm3Kl32GktUEhoHVjpWNZqJilHWWAcOoEVfKQFSUMmVZppCq2xVe5A-A0L5qqGOzcni-NfFPqWIrRlizhoPBqiZapuptplqm6l2Bm6OwGCTs7s22s6F9EdxqoXiMsvqowxz-O-A0SQXsHPoQ0Q3Gt-H_xx-ANHCaW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Minimal Number of Layers of a Perceptron That Sorts</title><source>Elsevier ScienceDirect Journals</source><creator>Zwietering, P.J. ; Aarts, E.H.L. ; Wessels, J.</creator><creatorcontrib>Zwietering, P.J. ; Aarts, E.H.L. ; Wessels, J.</creatorcontrib><description>In this paper we consider the problem of determining the minimal number of layers required by a multilayered perceptron for solving the problem of sorting a set of real-valued numbers. We discuss two formulations of the sorting problem; ABSSORT, which can be considered as the standard form of the sorting problem, and for which, given an array of numbers, a new array with the original numbers in ascending order is requested, and RELSORT, for which, given an array of numbers, one wants first to find the smallest number, and then for each number-except the largest-one wants to find the number that comes next in size. We show that, if one uses classical multilayered perceptrons with the hard-limiting response function, the minimal numbers of layers needed are 3 and 2 for solving ABSSORT and RELSORT, respectively.</description><identifier>ISSN: 0743-7315</identifier><identifier>EISSN: 1096-0848</identifier><identifier>DOI: 10.1006/jpdc.1994.1034</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology</subject><ispartof>Journal of parallel and distributed computing, 1994-03, Vol.20 (3), p.380-387</ispartof><rights>1994 Academic Press</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-e761bc1a6c32b9352303bac1c11fed275165064793901f7a28d16dc1a57d2b0c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0743731584710343$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4095746$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zwietering, P.J.</creatorcontrib><creatorcontrib>Aarts, E.H.L.</creatorcontrib><creatorcontrib>Wessels, J.</creatorcontrib><title>The Minimal Number of Layers of a Perceptron That Sorts</title><title>Journal of parallel and distributed computing</title><description>In this paper we consider the problem of determining the minimal number of layers required by a multilayered perceptron for solving the problem of sorting a set of real-valued numbers. We discuss two formulations of the sorting problem; ABSSORT, which can be considered as the standard form of the sorting problem, and for which, given an array of numbers, a new array with the original numbers in ascending order is requested, and RELSORT, for which, given an array of numbers, one wants first to find the smallest number, and then for each number-except the largest-one wants to find the number that comes next in size. We show that, if one uses classical multilayered perceptrons with the hard-limiting response function, the minimal numbers of layers needed are 3 and 2 for solving ABSSORT and RELSORT, respectively.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><issn>0743-7315</issn><issn>1096-0848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1j0tPwzAQhC0EEqVw5ZwD1xRv_IqPqOIllYdEOVuOvVFdtUlkB6T-exwVceO0u9J8OzOEXANdAKXydjt4twCteT4ZPyEzoFqWtOb1KZlRxVmpGIhzcpHSllIAoeoZUesNFi-hC3u7K16_9g3Gom-LlT1gTNNmi3eMDocx9l2x3tix-OjjmC7JWWt3Ca9-55x8Ptyvl0_l6u3xeXm3Kl32GktUEhoHVjpWNZqJilHWWAcOoEVfKQFSUMmVZppCq2xVe5A-A0L5qqGOzcni-NfFPqWIrRlizhoPBqiZapuptplqm6l2Bm6OwGCTs7s22s6F9EdxqoXiMsvqowxz-O-A0SQXsHPoQ0Q3Gt-H_xx-ANHCaW4</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>Zwietering, P.J.</creator><creator>Aarts, E.H.L.</creator><creator>Wessels, J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940301</creationdate><title>The Minimal Number of Layers of a Perceptron That Sorts</title><author>Zwietering, P.J. ; Aarts, E.H.L. ; Wessels, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-e761bc1a6c32b9352303bac1c11fed275165064793901f7a28d16dc1a57d2b0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zwietering, P.J.</creatorcontrib><creatorcontrib>Aarts, E.H.L.</creatorcontrib><creatorcontrib>Wessels, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of parallel and distributed computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zwietering, P.J.</au><au>Aarts, E.H.L.</au><au>Wessels, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Minimal Number of Layers of a Perceptron That Sorts</atitle><jtitle>Journal of parallel and distributed computing</jtitle><date>1994-03-01</date><risdate>1994</risdate><volume>20</volume><issue>3</issue><spage>380</spage><epage>387</epage><pages>380-387</pages><issn>0743-7315</issn><eissn>1096-0848</eissn><abstract>In this paper we consider the problem of determining the minimal number of layers required by a multilayered perceptron for solving the problem of sorting a set of real-valued numbers. We discuss two formulations of the sorting problem; ABSSORT, which can be considered as the standard form of the sorting problem, and for which, given an array of numbers, a new array with the original numbers in ascending order is requested, and RELSORT, for which, given an array of numbers, one wants first to find the smallest number, and then for each number-except the largest-one wants to find the number that comes next in size. We show that, if one uses classical multilayered perceptrons with the hard-limiting response function, the minimal numbers of layers needed are 3 and 2 for solving ABSSORT and RELSORT, respectively.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jpdc.1994.1034</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7315
ispartof Journal of parallel and distributed computing, 1994-03, Vol.20 (3), p.380-387
issn 0743-7315
1096-0848
language eng
recordid cdi_crossref_primary_10_1006_jpdc_1994_1034
source Elsevier ScienceDirect Journals
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Connectionism. Neural networks
Exact sciences and technology
title The Minimal Number of Layers of a Perceptron That Sorts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Minimal%20Number%20of%20Layers%20of%20a%20Perceptron%20That%20Sorts&rft.jtitle=Journal%20of%20parallel%20and%20distributed%20computing&rft.au=Zwietering,%20P.J.&rft.date=1994-03-01&rft.volume=20&rft.issue=3&rft.spage=380&rft.epage=387&rft.pages=380-387&rft.issn=0743-7315&rft.eissn=1096-0848&rft_id=info:doi/10.1006/jpdc.1994.1034&rft_dat=%3Celsevier_cross%3ES0743731584710343%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0743731584710343&rfr_iscdi=true