The Minimal Number of Layers of a Perceptron That Sorts
In this paper we consider the problem of determining the minimal number of layers required by a multilayered perceptron for solving the problem of sorting a set of real-valued numbers. We discuss two formulations of the sorting problem; ABSSORT, which can be considered as the standard form of the so...
Gespeichert in:
Veröffentlicht in: | Journal of parallel and distributed computing 1994-03, Vol.20 (3), p.380-387 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 387 |
---|---|
container_issue | 3 |
container_start_page | 380 |
container_title | Journal of parallel and distributed computing |
container_volume | 20 |
creator | Zwietering, P.J. Aarts, E.H.L. Wessels, J. |
description | In this paper we consider the problem of determining the minimal number of layers required by a multilayered perceptron for solving the problem of sorting a set of real-valued numbers. We discuss two formulations of the sorting problem; ABSSORT, which can be considered as the standard form of the sorting problem, and for which, given an array of numbers, a new array with the original numbers in ascending order is requested, and RELSORT, for which, given an array of numbers, one wants first to find the smallest number, and then for each number-except the largest-one wants to find the number that comes next in size. We show that, if one uses classical multilayered perceptrons with the hard-limiting response function, the minimal numbers of layers needed are 3 and 2 for solving ABSSORT and RELSORT, respectively. |
doi_str_mv | 10.1006/jpdc.1994.1034 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jpdc_1994_1034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0743731584710343</els_id><sourcerecordid>S0743731584710343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-e761bc1a6c32b9352303bac1c11fed275165064793901f7a28d16dc1a57d2b0c3</originalsourceid><addsrcrecordid>eNp1j0tPwzAQhC0EEqVw5ZwD1xRv_IqPqOIllYdEOVuOvVFdtUlkB6T-exwVceO0u9J8OzOEXANdAKXydjt4twCteT4ZPyEzoFqWtOb1KZlRxVmpGIhzcpHSllIAoeoZUesNFi-hC3u7K16_9g3Gom-LlT1gTNNmi3eMDocx9l2x3tix-OjjmC7JWWt3Ca9-55x8Ptyvl0_l6u3xeXm3Kl32GktUEhoHVjpWNZqJilHWWAcOoEVfKQFSUMmVZppCq2xVe5A-A0L5qqGOzcni-NfFPqWIrRlizhoPBqiZapuptplqm6l2Bm6OwGCTs7s22s6F9EdxqoXiMsvqowxz-O-A0SQXsHPoQ0Q3Gt-H_xx-ANHCaW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Minimal Number of Layers of a Perceptron That Sorts</title><source>Elsevier ScienceDirect Journals</source><creator>Zwietering, P.J. ; Aarts, E.H.L. ; Wessels, J.</creator><creatorcontrib>Zwietering, P.J. ; Aarts, E.H.L. ; Wessels, J.</creatorcontrib><description>In this paper we consider the problem of determining the minimal number of layers required by a multilayered perceptron for solving the problem of sorting a set of real-valued numbers. We discuss two formulations of the sorting problem; ABSSORT, which can be considered as the standard form of the sorting problem, and for which, given an array of numbers, a new array with the original numbers in ascending order is requested, and RELSORT, for which, given an array of numbers, one wants first to find the smallest number, and then for each number-except the largest-one wants to find the number that comes next in size. We show that, if one uses classical multilayered perceptrons with the hard-limiting response function, the minimal numbers of layers needed are 3 and 2 for solving ABSSORT and RELSORT, respectively.</description><identifier>ISSN: 0743-7315</identifier><identifier>EISSN: 1096-0848</identifier><identifier>DOI: 10.1006/jpdc.1994.1034</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology</subject><ispartof>Journal of parallel and distributed computing, 1994-03, Vol.20 (3), p.380-387</ispartof><rights>1994 Academic Press</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-e761bc1a6c32b9352303bac1c11fed275165064793901f7a28d16dc1a57d2b0c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0743731584710343$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4095746$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zwietering, P.J.</creatorcontrib><creatorcontrib>Aarts, E.H.L.</creatorcontrib><creatorcontrib>Wessels, J.</creatorcontrib><title>The Minimal Number of Layers of a Perceptron That Sorts</title><title>Journal of parallel and distributed computing</title><description>In this paper we consider the problem of determining the minimal number of layers required by a multilayered perceptron for solving the problem of sorting a set of real-valued numbers. We discuss two formulations of the sorting problem; ABSSORT, which can be considered as the standard form of the sorting problem, and for which, given an array of numbers, a new array with the original numbers in ascending order is requested, and RELSORT, for which, given an array of numbers, one wants first to find the smallest number, and then for each number-except the largest-one wants to find the number that comes next in size. We show that, if one uses classical multilayered perceptrons with the hard-limiting response function, the minimal numbers of layers needed are 3 and 2 for solving ABSSORT and RELSORT, respectively.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><issn>0743-7315</issn><issn>1096-0848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1j0tPwzAQhC0EEqVw5ZwD1xRv_IqPqOIllYdEOVuOvVFdtUlkB6T-exwVceO0u9J8OzOEXANdAKXydjt4twCteT4ZPyEzoFqWtOb1KZlRxVmpGIhzcpHSllIAoeoZUesNFi-hC3u7K16_9g3Gom-LlT1gTNNmi3eMDocx9l2x3tix-OjjmC7JWWt3Ca9-55x8Ptyvl0_l6u3xeXm3Kl32GktUEhoHVjpWNZqJilHWWAcOoEVfKQFSUMmVZppCq2xVe5A-A0L5qqGOzcni-NfFPqWIrRlizhoPBqiZapuptplqm6l2Bm6OwGCTs7s22s6F9EdxqoXiMsvqowxz-O-A0SQXsHPoQ0Q3Gt-H_xx-ANHCaW4</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>Zwietering, P.J.</creator><creator>Aarts, E.H.L.</creator><creator>Wessels, J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940301</creationdate><title>The Minimal Number of Layers of a Perceptron That Sorts</title><author>Zwietering, P.J. ; Aarts, E.H.L. ; Wessels, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-e761bc1a6c32b9352303bac1c11fed275165064793901f7a28d16dc1a57d2b0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zwietering, P.J.</creatorcontrib><creatorcontrib>Aarts, E.H.L.</creatorcontrib><creatorcontrib>Wessels, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of parallel and distributed computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zwietering, P.J.</au><au>Aarts, E.H.L.</au><au>Wessels, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Minimal Number of Layers of a Perceptron That Sorts</atitle><jtitle>Journal of parallel and distributed computing</jtitle><date>1994-03-01</date><risdate>1994</risdate><volume>20</volume><issue>3</issue><spage>380</spage><epage>387</epage><pages>380-387</pages><issn>0743-7315</issn><eissn>1096-0848</eissn><abstract>In this paper we consider the problem of determining the minimal number of layers required by a multilayered perceptron for solving the problem of sorting a set of real-valued numbers. We discuss two formulations of the sorting problem; ABSSORT, which can be considered as the standard form of the sorting problem, and for which, given an array of numbers, a new array with the original numbers in ascending order is requested, and RELSORT, for which, given an array of numbers, one wants first to find the smallest number, and then for each number-except the largest-one wants to find the number that comes next in size. We show that, if one uses classical multilayered perceptrons with the hard-limiting response function, the minimal numbers of layers needed are 3 and 2 for solving ABSSORT and RELSORT, respectively.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jpdc.1994.1034</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7315 |
ispartof | Journal of parallel and distributed computing, 1994-03, Vol.20 (3), p.380-387 |
issn | 0743-7315 1096-0848 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jpdc_1994_1034 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Connectionism. Neural networks Exact sciences and technology |
title | The Minimal Number of Layers of a Perceptron That Sorts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Minimal%20Number%20of%20Layers%20of%20a%20Perceptron%20That%20Sorts&rft.jtitle=Journal%20of%20parallel%20and%20distributed%20computing&rft.au=Zwietering,%20P.J.&rft.date=1994-03-01&rft.volume=20&rft.issue=3&rft.spage=380&rft.epage=387&rft.pages=380-387&rft.issn=0743-7315&rft.eissn=1096-0848&rft_id=info:doi/10.1006/jpdc.1994.1034&rft_dat=%3Celsevier_cross%3ES0743731584710343%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0743731584710343&rfr_iscdi=true |