Halfspace Depth and Regression Depth Characterize the Empirical Distribution

For multivariate data, the halfspace depth function can be seen as a natural and affine equivariant generalization of the univariate empirical cdf. For any multivariate data set, we show that the resulting halfspace depth function completely determines the empirical distribution. We do this by actua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 1999-04, Vol.69 (1), p.135-153
Hauptverfasser: Struyf, Anja J, Rousseeuw, Peter J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 1
container_start_page 135
container_title Journal of multivariate analysis
container_volume 69
creator Struyf, Anja J
Rousseeuw, Peter J
description For multivariate data, the halfspace depth function can be seen as a natural and affine equivariant generalization of the univariate empirical cdf. For any multivariate data set, we show that the resulting halfspace depth function completely determines the empirical distribution. We do this by actually reconstructing the data points from the depth contours. The data need not be in general position. Moreover, we prove the same property for regression depth.
doi_str_mv 10.1006/jmva.1998.1804
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmva_1998_1804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X98918048</els_id><sourcerecordid>S0047259X98918048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3374-170d432c0d045b322c00312acc4eb5d18ec50d9e2f2c336a8cdcd0b1306b28853</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK5ePffgtXWSNP04yu7qKguCKHgLaTK1WbbdktQF_etN6aInD5N5hPeGx4-QawoJBchut-1BJbQsi4QWkJ6QGYVSxDlL-SmZAaR5zET5fk4uvN8CUCrydEY2a7Wrfa80RkvshyZSnYle8MOh93bfHT8XjXJKD-jsN0ZDg9Gq7a2zWu2ipfWDs9XnENyX5KxWO49Xxz0nb_er18U63jw_PC7uNrHmPE9jmoNJOdNgIBUVZ0EBp0xpnWIlDC1QCzAlspqFQKYKbbSBinLIKlYUgs9JMt3Vbu-9w1r2zrbKfUkKcmQhRxZyZCFHFiHwNAUc9qh_3Yg4GjslD5KrrAzPV5iQG6UdZZh-3FxIKrhshjYcu5mO9coHArVTnbb-r0Ke89A02IrJhoHEwaKTXlvsNBrrUA_S7O1_dX8AUZOLvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Halfspace Depth and Regression Depth Characterize the Empirical Distribution</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Struyf, Anja J ; Rousseeuw, Peter J</creator><creatorcontrib>Struyf, Anja J ; Rousseeuw, Peter J</creatorcontrib><description>For multivariate data, the halfspace depth function can be seen as a natural and affine equivariant generalization of the univariate empirical cdf. For any multivariate data set, we show that the resulting halfspace depth function completely determines the empirical distribution. We do this by actually reconstructing the data points from the depth contours. The data need not be in general position. Moreover, we prove the same property for regression depth.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1006/jmva.1998.1804</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Exact sciences and technology ; Linear inference, regression ; location depth ; location depth, multivariate ranking, reconstruction algorithm, regression depth ; Mathematics ; multivariate ranking ; Nonparametric inference ; Probability and statistics ; reconstruction algorithm ; regression depth ; Sciences and techniques of general use ; Statistics</subject><ispartof>Journal of multivariate analysis, 1999-04, Vol.69 (1), p.135-153</ispartof><rights>1999 Academic Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3374-170d432c0d045b322c00312acc4eb5d18ec50d9e2f2c336a8cdcd0b1306b28853</citedby><cites>FETCH-LOGICAL-c3374-170d432c0d045b322c00312acc4eb5d18ec50d9e2f2c336a8cdcd0b1306b28853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0047259X98918048$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1773306$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a69_3ay_3a1999_3ai_3a1_3ap_3a135-153.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Struyf, Anja J</creatorcontrib><creatorcontrib>Rousseeuw, Peter J</creatorcontrib><title>Halfspace Depth and Regression Depth Characterize the Empirical Distribution</title><title>Journal of multivariate analysis</title><description>For multivariate data, the halfspace depth function can be seen as a natural and affine equivariant generalization of the univariate empirical cdf. For any multivariate data set, we show that the resulting halfspace depth function completely determines the empirical distribution. We do this by actually reconstructing the data points from the depth contours. The data need not be in general position. Moreover, we prove the same property for regression depth.</description><subject>Exact sciences and technology</subject><subject>Linear inference, regression</subject><subject>location depth</subject><subject>location depth, multivariate ranking, reconstruction algorithm, regression depth</subject><subject>Mathematics</subject><subject>multivariate ranking</subject><subject>Nonparametric inference</subject><subject>Probability and statistics</subject><subject>reconstruction algorithm</subject><subject>regression depth</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp1kM1LxDAQxYMouK5ePffgtXWSNP04yu7qKguCKHgLaTK1WbbdktQF_etN6aInD5N5hPeGx4-QawoJBchut-1BJbQsi4QWkJ6QGYVSxDlL-SmZAaR5zET5fk4uvN8CUCrydEY2a7Wrfa80RkvshyZSnYle8MOh93bfHT8XjXJKD-jsN0ZDg9Gq7a2zWu2ipfWDs9XnENyX5KxWO49Xxz0nb_er18U63jw_PC7uNrHmPE9jmoNJOdNgIBUVZ0EBp0xpnWIlDC1QCzAlspqFQKYKbbSBinLIKlYUgs9JMt3Vbu-9w1r2zrbKfUkKcmQhRxZyZCFHFiHwNAUc9qh_3Yg4GjslD5KrrAzPV5iQG6UdZZh-3FxIKrhshjYcu5mO9coHArVTnbb-r0Ke89A02IrJhoHEwaKTXlvsNBrrUA_S7O1_dX8AUZOLvg</recordid><startdate>199904</startdate><enddate>199904</enddate><creator>Struyf, Anja J</creator><creator>Rousseeuw, Peter J</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199904</creationdate><title>Halfspace Depth and Regression Depth Characterize the Empirical Distribution</title><author>Struyf, Anja J ; Rousseeuw, Peter J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3374-170d432c0d045b322c00312acc4eb5d18ec50d9e2f2c336a8cdcd0b1306b28853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Exact sciences and technology</topic><topic>Linear inference, regression</topic><topic>location depth</topic><topic>location depth, multivariate ranking, reconstruction algorithm, regression depth</topic><topic>Mathematics</topic><topic>multivariate ranking</topic><topic>Nonparametric inference</topic><topic>Probability and statistics</topic><topic>reconstruction algorithm</topic><topic>regression depth</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Struyf, Anja J</creatorcontrib><creatorcontrib>Rousseeuw, Peter J</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Struyf, Anja J</au><au>Rousseeuw, Peter J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halfspace Depth and Regression Depth Characterize the Empirical Distribution</atitle><jtitle>Journal of multivariate analysis</jtitle><date>1999-04</date><risdate>1999</risdate><volume>69</volume><issue>1</issue><spage>135</spage><epage>153</epage><pages>135-153</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>For multivariate data, the halfspace depth function can be seen as a natural and affine equivariant generalization of the univariate empirical cdf. For any multivariate data set, we show that the resulting halfspace depth function completely determines the empirical distribution. We do this by actually reconstructing the data points from the depth contours. The data need not be in general position. Moreover, we prove the same property for regression depth.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmva.1998.1804</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 1999-04, Vol.69 (1), p.135-153
issn 0047-259X
1095-7243
language eng
recordid cdi_crossref_primary_10_1006_jmva_1998_1804
source RePEc; Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Exact sciences and technology
Linear inference, regression
location depth
location depth, multivariate ranking, reconstruction algorithm, regression depth
Mathematics
multivariate ranking
Nonparametric inference
Probability and statistics
reconstruction algorithm
regression depth
Sciences and techniques of general use
Statistics
title Halfspace Depth and Regression Depth Characterize the Empirical Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halfspace%20Depth%20and%20Regression%20Depth%20Characterize%20the%20Empirical%20Distribution&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Struyf,%20Anja%20J&rft.date=1999-04&rft.volume=69&rft.issue=1&rft.spage=135&rft.epage=153&rft.pages=135-153&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1006/jmva.1998.1804&rft_dat=%3Celsevier_cross%3ES0047259X98918048%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0047259X98918048&rfr_iscdi=true