On Kendall's Process
LetZ1, …, Znbe a random sample of sizen⩾2 from ad-variate continuous distribution functionH, and letVi, nstand for the proportion of observationsZj,j≠i, such thatZj⩽Zicomponentwise. The purpose of this paper is to examine the limiting behavior of the empirical distribution functionKnderived from the...
Gespeichert in:
Veröffentlicht in: | Journal of multivariate analysis 1996-08, Vol.58 (2), p.197-229 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 229 |
---|---|
container_issue | 2 |
container_start_page | 197 |
container_title | Journal of multivariate analysis |
container_volume | 58 |
creator | Barbe, Philippe Genest, Christian Ghoudi, Kilani Rémillard, Bruno |
description | LetZ1, …, Znbe a random sample of sizen⩾2 from ad-variate continuous distribution functionH, and letVi, nstand for the proportion of observationsZj,j≠i, such thatZj⩽Zicomponentwise. The purpose of this paper is to examine the limiting behavior of the empirical distribution functionKnderived from the (dependent) pseudo-observationsVi, n. This random quantity is a natural nonparametric estimator ofK, the distribution function of the random variableV=H(Z), whose expectation is an affine transformation of the population version of Kendall's tau in the cased=2. Since the sample version ofτis related in the same way to the mean ofKn, Genest and Rivest (1993,J. Amer. Statist. Assoc.) suggested that[formula]be referred to as Kendall's process. Weak regularity conditions onKandHare found under which this centered process is asymptotically Gaussian, and an explicit expression for its limiting covariance function is given. These conditions, which are fairly easy to check, are seen to apply to large classes of multivariate distributions. |
doi_str_mv | 10.1006/jmva.1996.0048 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmva_1996_0048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X96900482</els_id><sourcerecordid>S0047259X96900482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-a05edbea2da8e842ba670f0142c03a1cab34c3d6bac83eded8c676e97976b90e3</originalsourceid><addsrcrecordid>eNp1UE1Lw0AUXETBWr2J5x4ET4n7lWz2KMXvQj0oeFtedl9wS5qG3VLov3fTSG8e5j0YZoY3j5AbRnNGaXm_Wu8gZ1qXOaWyOiETRnWRKS7FKZkkSmW80N_n5CLGFaWMFUpOyPWym71j56Bt7-LsI2wsxnhJzhpoI1797Sn5enr8nL9ki-Xz6_xhkVnJ-TYDWqCrEbiDCivJaygVbSiT3FIBzEItpBWurMFWAh26ypaqRK20KmtNUUxJPubasIkxYGP64NcQ9oZRM3QyQyczdDJDp2R4Gw0Be7RHNSIOwg7MzggoqjT2CQefAJ_AE_oDpQzn2vxs1ynsdgzrIVpomwCd9fEYKtK3BBdJVo0yTJ_YeQwmWo-dRecD2q1xG__fub_OOXfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Kendall's Process</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>RePEc</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Barbe, Philippe ; Genest, Christian ; Ghoudi, Kilani ; Rémillard, Bruno</creator><creatorcontrib>Barbe, Philippe ; Genest, Christian ; Ghoudi, Kilani ; Rémillard, Bruno</creatorcontrib><description>LetZ1, …, Znbe a random sample of sizen⩾2 from ad-variate continuous distribution functionH, and letVi, nstand for the proportion of observationsZj,j≠i, such thatZj⩽Zicomponentwise. The purpose of this paper is to examine the limiting behavior of the empirical distribution functionKnderived from the (dependent) pseudo-observationsVi, n. This random quantity is a natural nonparametric estimator ofK, the distribution function of the random variableV=H(Z), whose expectation is an affine transformation of the population version of Kendall's tau in the cased=2. Since the sample version ofτis related in the same way to the mean ofKn, Genest and Rivest (1993,J. Amer. Statist. Assoc.) suggested that[formula]be referred to as Kendall's process. Weak regularity conditions onKandHare found under which this centered process is asymptotically Gaussian, and an explicit expression for its limiting covariance function is given. These conditions, which are fairly easy to check, are seen to apply to large classes of multivariate distributions.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1006/jmva.1996.0048</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>asymptotic calculations ; asymptotic calculations copulas dependent observations empirical processes Vapnik-Cervonenkis classes ; copulas ; dependent observations ; empirical processes ; Exact sciences and technology ; Mathematics ; Multivariate analysis ; Nonparametric inference ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Vapnik–Cervonenkis classes</subject><ispartof>Journal of multivariate analysis, 1996-08, Vol.58 (2), p.197-229</ispartof><rights>1996 Academic Press</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-a05edbea2da8e842ba670f0142c03a1cab34c3d6bac83eded8c676e97976b90e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmva.1996.0048$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,4006,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3259323$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a58_3ay_3a1996_3ai_3a2_3ap_3a197-229.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbe, Philippe</creatorcontrib><creatorcontrib>Genest, Christian</creatorcontrib><creatorcontrib>Ghoudi, Kilani</creatorcontrib><creatorcontrib>Rémillard, Bruno</creatorcontrib><title>On Kendall's Process</title><title>Journal of multivariate analysis</title><description>LetZ1, …, Znbe a random sample of sizen⩾2 from ad-variate continuous distribution functionH, and letVi, nstand for the proportion of observationsZj,j≠i, such thatZj⩽Zicomponentwise. The purpose of this paper is to examine the limiting behavior of the empirical distribution functionKnderived from the (dependent) pseudo-observationsVi, n. This random quantity is a natural nonparametric estimator ofK, the distribution function of the random variableV=H(Z), whose expectation is an affine transformation of the population version of Kendall's tau in the cased=2. Since the sample version ofτis related in the same way to the mean ofKn, Genest and Rivest (1993,J. Amer. Statist. Assoc.) suggested that[formula]be referred to as Kendall's process. Weak regularity conditions onKandHare found under which this centered process is asymptotically Gaussian, and an explicit expression for its limiting covariance function is given. These conditions, which are fairly easy to check, are seen to apply to large classes of multivariate distributions.</description><subject>asymptotic calculations</subject><subject>asymptotic calculations copulas dependent observations empirical processes Vapnik-Cervonenkis classes</subject><subject>copulas</subject><subject>dependent observations</subject><subject>empirical processes</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Vapnik–Cervonenkis classes</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp1UE1Lw0AUXETBWr2J5x4ET4n7lWz2KMXvQj0oeFtedl9wS5qG3VLov3fTSG8e5j0YZoY3j5AbRnNGaXm_Wu8gZ1qXOaWyOiETRnWRKS7FKZkkSmW80N_n5CLGFaWMFUpOyPWym71j56Bt7-LsI2wsxnhJzhpoI1797Sn5enr8nL9ki-Xz6_xhkVnJ-TYDWqCrEbiDCivJaygVbSiT3FIBzEItpBWurMFWAh26ypaqRK20KmtNUUxJPubasIkxYGP64NcQ9oZRM3QyQyczdDJDp2R4Gw0Be7RHNSIOwg7MzggoqjT2CQefAJ_AE_oDpQzn2vxs1ynsdgzrIVpomwCd9fEYKtK3BBdJVo0yTJ_YeQwmWo-dRecD2q1xG__fub_OOXfI</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Barbe, Philippe</creator><creator>Genest, Christian</creator><creator>Ghoudi, Kilani</creator><creator>Rémillard, Bruno</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960801</creationdate><title>On Kendall's Process</title><author>Barbe, Philippe ; Genest, Christian ; Ghoudi, Kilani ; Rémillard, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-a05edbea2da8e842ba670f0142c03a1cab34c3d6bac83eded8c676e97976b90e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>asymptotic calculations</topic><topic>asymptotic calculations copulas dependent observations empirical processes Vapnik-Cervonenkis classes</topic><topic>copulas</topic><topic>dependent observations</topic><topic>empirical processes</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Vapnik–Cervonenkis classes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbe, Philippe</creatorcontrib><creatorcontrib>Genest, Christian</creatorcontrib><creatorcontrib>Ghoudi, Kilani</creatorcontrib><creatorcontrib>Rémillard, Bruno</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbe, Philippe</au><au>Genest, Christian</au><au>Ghoudi, Kilani</au><au>Rémillard, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Kendall's Process</atitle><jtitle>Journal of multivariate analysis</jtitle><date>1996-08-01</date><risdate>1996</risdate><volume>58</volume><issue>2</issue><spage>197</spage><epage>229</epage><pages>197-229</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>LetZ1, …, Znbe a random sample of sizen⩾2 from ad-variate continuous distribution functionH, and letVi, nstand for the proportion of observationsZj,j≠i, such thatZj⩽Zicomponentwise. The purpose of this paper is to examine the limiting behavior of the empirical distribution functionKnderived from the (dependent) pseudo-observationsVi, n. This random quantity is a natural nonparametric estimator ofK, the distribution function of the random variableV=H(Z), whose expectation is an affine transformation of the population version of Kendall's tau in the cased=2. Since the sample version ofτis related in the same way to the mean ofKn, Genest and Rivest (1993,J. Amer. Statist. Assoc.) suggested that[formula]be referred to as Kendall's process. Weak regularity conditions onKandHare found under which this centered process is asymptotically Gaussian, and an explicit expression for its limiting covariance function is given. These conditions, which are fairly easy to check, are seen to apply to large classes of multivariate distributions.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmva.1996.0048</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-259X |
ispartof | Journal of multivariate analysis, 1996-08, Vol.58 (2), p.197-229 |
issn | 0047-259X 1095-7243 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jmva_1996_0048 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; RePEc; EZB-FREE-00999 freely available EZB journals |
subjects | asymptotic calculations asymptotic calculations copulas dependent observations empirical processes Vapnik-Cervonenkis classes copulas dependent observations empirical processes Exact sciences and technology Mathematics Multivariate analysis Nonparametric inference Probability and statistics Sciences and techniques of general use Statistics Vapnik–Cervonenkis classes |
title | On Kendall's Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Kendall's%20Process&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Barbe,%20Philippe&rft.date=1996-08-01&rft.volume=58&rft.issue=2&rft.spage=197&rft.epage=229&rft.pages=197-229&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1006/jmva.1996.0048&rft_dat=%3Celsevier_cross%3ES0047259X96900482%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0047259X96900482&rfr_iscdi=true |