On Kendall's Process

LetZ1, …, Znbe a random sample of sizen⩾2 from ad-variate continuous distribution functionH, and letVi, nstand for the proportion of observationsZj,j≠i, such thatZj⩽Zicomponentwise. The purpose of this paper is to examine the limiting behavior of the empirical distribution functionKnderived from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 1996-08, Vol.58 (2), p.197-229
Hauptverfasser: Barbe, Philippe, Genest, Christian, Ghoudi, Kilani, Rémillard, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue 2
container_start_page 197
container_title Journal of multivariate analysis
container_volume 58
creator Barbe, Philippe
Genest, Christian
Ghoudi, Kilani
Rémillard, Bruno
description LetZ1, …, Znbe a random sample of sizen⩾2 from ad-variate continuous distribution functionH, and letVi, nstand for the proportion of observationsZj,j≠i, such thatZj⩽Zicomponentwise. The purpose of this paper is to examine the limiting behavior of the empirical distribution functionKnderived from the (dependent) pseudo-observationsVi, n. This random quantity is a natural nonparametric estimator ofK, the distribution function of the random variableV=H(Z), whose expectation is an affine transformation of the population version of Kendall's tau in the cased=2. Since the sample version ofτis related in the same way to the mean ofKn, Genest and Rivest (1993,J. Amer. Statist. Assoc.) suggested that[formula]be referred to as Kendall's process. Weak regularity conditions onKandHare found under which this centered process is asymptotically Gaussian, and an explicit expression for its limiting covariance function is given. These conditions, which are fairly easy to check, are seen to apply to large classes of multivariate distributions.
doi_str_mv 10.1006/jmva.1996.0048
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmva_1996_0048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X96900482</els_id><sourcerecordid>S0047259X96900482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-a05edbea2da8e842ba670f0142c03a1cab34c3d6bac83eded8c676e97976b90e3</originalsourceid><addsrcrecordid>eNp1UE1Lw0AUXETBWr2J5x4ET4n7lWz2KMXvQj0oeFtedl9wS5qG3VLov3fTSG8e5j0YZoY3j5AbRnNGaXm_Wu8gZ1qXOaWyOiETRnWRKS7FKZkkSmW80N_n5CLGFaWMFUpOyPWym71j56Bt7-LsI2wsxnhJzhpoI1797Sn5enr8nL9ki-Xz6_xhkVnJ-TYDWqCrEbiDCivJaygVbSiT3FIBzEItpBWurMFWAh26ypaqRK20KmtNUUxJPubasIkxYGP64NcQ9oZRM3QyQyczdDJDp2R4Gw0Be7RHNSIOwg7MzggoqjT2CQefAJ_AE_oDpQzn2vxs1ynsdgzrIVpomwCd9fEYKtK3BBdJVo0yTJ_YeQwmWo-dRecD2q1xG__fub_OOXfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Kendall's Process</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>RePEc</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Barbe, Philippe ; Genest, Christian ; Ghoudi, Kilani ; Rémillard, Bruno</creator><creatorcontrib>Barbe, Philippe ; Genest, Christian ; Ghoudi, Kilani ; Rémillard, Bruno</creatorcontrib><description>LetZ1, …, Znbe a random sample of sizen⩾2 from ad-variate continuous distribution functionH, and letVi, nstand for the proportion of observationsZj,j≠i, such thatZj⩽Zicomponentwise. The purpose of this paper is to examine the limiting behavior of the empirical distribution functionKnderived from the (dependent) pseudo-observationsVi, n. This random quantity is a natural nonparametric estimator ofK, the distribution function of the random variableV=H(Z), whose expectation is an affine transformation of the population version of Kendall's tau in the cased=2. Since the sample version ofτis related in the same way to the mean ofKn, Genest and Rivest (1993,J. Amer. Statist. Assoc.) suggested that[formula]be referred to as Kendall's process. Weak regularity conditions onKandHare found under which this centered process is asymptotically Gaussian, and an explicit expression for its limiting covariance function is given. These conditions, which are fairly easy to check, are seen to apply to large classes of multivariate distributions.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1006/jmva.1996.0048</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>asymptotic calculations ; asymptotic calculations copulas dependent observations empirical processes Vapnik-Cervonenkis classes ; copulas ; dependent observations ; empirical processes ; Exact sciences and technology ; Mathematics ; Multivariate analysis ; Nonparametric inference ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Vapnik–Cervonenkis classes</subject><ispartof>Journal of multivariate analysis, 1996-08, Vol.58 (2), p.197-229</ispartof><rights>1996 Academic Press</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-a05edbea2da8e842ba670f0142c03a1cab34c3d6bac83eded8c676e97976b90e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmva.1996.0048$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,4006,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3259323$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a58_3ay_3a1996_3ai_3a2_3ap_3a197-229.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbe, Philippe</creatorcontrib><creatorcontrib>Genest, Christian</creatorcontrib><creatorcontrib>Ghoudi, Kilani</creatorcontrib><creatorcontrib>Rémillard, Bruno</creatorcontrib><title>On Kendall's Process</title><title>Journal of multivariate analysis</title><description>LetZ1, …, Znbe a random sample of sizen⩾2 from ad-variate continuous distribution functionH, and letVi, nstand for the proportion of observationsZj,j≠i, such thatZj⩽Zicomponentwise. The purpose of this paper is to examine the limiting behavior of the empirical distribution functionKnderived from the (dependent) pseudo-observationsVi, n. This random quantity is a natural nonparametric estimator ofK, the distribution function of the random variableV=H(Z), whose expectation is an affine transformation of the population version of Kendall's tau in the cased=2. Since the sample version ofτis related in the same way to the mean ofKn, Genest and Rivest (1993,J. Amer. Statist. Assoc.) suggested that[formula]be referred to as Kendall's process. Weak regularity conditions onKandHare found under which this centered process is asymptotically Gaussian, and an explicit expression for its limiting covariance function is given. These conditions, which are fairly easy to check, are seen to apply to large classes of multivariate distributions.</description><subject>asymptotic calculations</subject><subject>asymptotic calculations copulas dependent observations empirical processes Vapnik-Cervonenkis classes</subject><subject>copulas</subject><subject>dependent observations</subject><subject>empirical processes</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Vapnik–Cervonenkis classes</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp1UE1Lw0AUXETBWr2J5x4ET4n7lWz2KMXvQj0oeFtedl9wS5qG3VLov3fTSG8e5j0YZoY3j5AbRnNGaXm_Wu8gZ1qXOaWyOiETRnWRKS7FKZkkSmW80N_n5CLGFaWMFUpOyPWym71j56Bt7-LsI2wsxnhJzhpoI1797Sn5enr8nL9ki-Xz6_xhkVnJ-TYDWqCrEbiDCivJaygVbSiT3FIBzEItpBWurMFWAh26ypaqRK20KmtNUUxJPubasIkxYGP64NcQ9oZRM3QyQyczdDJDp2R4Gw0Be7RHNSIOwg7MzggoqjT2CQefAJ_AE_oDpQzn2vxs1ynsdgzrIVpomwCd9fEYKtK3BBdJVo0yTJ_YeQwmWo-dRecD2q1xG__fub_OOXfI</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Barbe, Philippe</creator><creator>Genest, Christian</creator><creator>Ghoudi, Kilani</creator><creator>Rémillard, Bruno</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960801</creationdate><title>On Kendall's Process</title><author>Barbe, Philippe ; Genest, Christian ; Ghoudi, Kilani ; Rémillard, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-a05edbea2da8e842ba670f0142c03a1cab34c3d6bac83eded8c676e97976b90e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>asymptotic calculations</topic><topic>asymptotic calculations copulas dependent observations empirical processes Vapnik-Cervonenkis classes</topic><topic>copulas</topic><topic>dependent observations</topic><topic>empirical processes</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Vapnik–Cervonenkis classes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbe, Philippe</creatorcontrib><creatorcontrib>Genest, Christian</creatorcontrib><creatorcontrib>Ghoudi, Kilani</creatorcontrib><creatorcontrib>Rémillard, Bruno</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbe, Philippe</au><au>Genest, Christian</au><au>Ghoudi, Kilani</au><au>Rémillard, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Kendall's Process</atitle><jtitle>Journal of multivariate analysis</jtitle><date>1996-08-01</date><risdate>1996</risdate><volume>58</volume><issue>2</issue><spage>197</spage><epage>229</epage><pages>197-229</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>LetZ1, …, Znbe a random sample of sizen⩾2 from ad-variate continuous distribution functionH, and letVi, nstand for the proportion of observationsZj,j≠i, such thatZj⩽Zicomponentwise. The purpose of this paper is to examine the limiting behavior of the empirical distribution functionKnderived from the (dependent) pseudo-observationsVi, n. This random quantity is a natural nonparametric estimator ofK, the distribution function of the random variableV=H(Z), whose expectation is an affine transformation of the population version of Kendall's tau in the cased=2. Since the sample version ofτis related in the same way to the mean ofKn, Genest and Rivest (1993,J. Amer. Statist. Assoc.) suggested that[formula]be referred to as Kendall's process. Weak regularity conditions onKandHare found under which this centered process is asymptotically Gaussian, and an explicit expression for its limiting covariance function is given. These conditions, which are fairly easy to check, are seen to apply to large classes of multivariate distributions.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmva.1996.0048</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 1996-08, Vol.58 (2), p.197-229
issn 0047-259X
1095-7243
language eng
recordid cdi_crossref_primary_10_1006_jmva_1996_0048
source Elsevier ScienceDirect Journals Complete - AutoHoldings; RePEc; EZB-FREE-00999 freely available EZB journals
subjects asymptotic calculations
asymptotic calculations copulas dependent observations empirical processes Vapnik-Cervonenkis classes
copulas
dependent observations
empirical processes
Exact sciences and technology
Mathematics
Multivariate analysis
Nonparametric inference
Probability and statistics
Sciences and techniques of general use
Statistics
Vapnik–Cervonenkis classes
title On Kendall's Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Kendall's%20Process&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Barbe,%20Philippe&rft.date=1996-08-01&rft.volume=58&rft.issue=2&rft.spage=197&rft.epage=229&rft.pages=197-229&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1006/jmva.1996.0048&rft_dat=%3Celsevier_cross%3ES0047259X96900482%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0047259X96900482&rfr_iscdi=true