A Simple Relationship between Total RF Pulse Energy and Magnetization Response - The Nonlinear Generalization of Parseval′s Relation

A simple expression for the total energy of an RF pulse is given in terms of the magnetization response of the pulse. It is shown to be a nonlinear generalization of Parseval′s relation and is one of an infinite number of conserved quantities, or integrals of the motion, found in the theory of nonli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance. Series A 1995-08, Vol.115 (2), p.189-196
Hauptverfasser: Rourke, D.E., Saunders, J.K.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue 2
container_start_page 189
container_title Journal of magnetic resonance. Series A
container_volume 115
creator Rourke, D.E.
Saunders, J.K.
description A simple expression for the total energy of an RF pulse is given in terms of the magnetization response of the pulse. It is shown to be a nonlinear generalization of Parseval′s relation and is one of an infinite number of conserved quantities, or integrals of the motion, found in the theory of nonlinear evolution equations. The simplicity of this expression enables the statement of a straightforward criterion for pulses that must have their energy reduced. It also allows the proof of some important theorems in pulse theory, including the known result that minimum-phase pulses are minimum energy pulses, and the previously unknown result that B 1-insensitive pulses must induce (possibly improper) bound states. A comparison of the energy requirements of minimum-phase and self-refocused pulses is given. Further, "Butterworth" pulses are compared to "Chebyshev I" pulses and found to require more energy in general.
doi_str_mv 10.1006/jmra.1995.1166
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmra_1995_1166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1064185885711667</els_id><sourcerecordid>S1064185885711667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1336-7b92d271f866cb662ff1124811d62a63cbef0203e0c9103edc47226109d290603</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqWwMvsFEmwndZOxqtqCVKCCMluOc2lduU5kh6IyMfFAPBJPgkOBjem_4b77Tx9Cl5TElBB-tdk6GdM8H8SUcn6EepTkPCIZT4-7macRzQbZKTrzfkMICTtpD72P8KPeNgbwAxjZ6tr6tW5wAe0LgMXLupUGP0zx4tl4wBMLbrXH0pb4Vq4stPr1mwmwbwIKOMLLNeC72hptQTo8g4BI87tXV3ghnYedNJ9vH_6v9BydVDI0XPxkHz1NJ8vxdTS_n92MR_NI0STh0bDIWcmGtMo4VwXnrKooZWlGacmZ5IkqoCKMJEBUTkOUKh0yxoOIkuWEk6SP4sNd5WrvHVSicXor3V5QIjqLorMoOouisxiA7ABA-GqnwQmvNFgFpXagWlHW-j_0C2PTevw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Simple Relationship between Total RF Pulse Energy and Magnetization Response - The Nonlinear Generalization of Parseval′s Relation</title><source>Alma/SFX Local Collection</source><creator>Rourke, D.E. ; Saunders, J.K.</creator><creatorcontrib>Rourke, D.E. ; Saunders, J.K.</creatorcontrib><description>A simple expression for the total energy of an RF pulse is given in terms of the magnetization response of the pulse. It is shown to be a nonlinear generalization of Parseval′s relation and is one of an infinite number of conserved quantities, or integrals of the motion, found in the theory of nonlinear evolution equations. The simplicity of this expression enables the statement of a straightforward criterion for pulses that must have their energy reduced. It also allows the proof of some important theorems in pulse theory, including the known result that minimum-phase pulses are minimum energy pulses, and the previously unknown result that B 1-insensitive pulses must induce (possibly improper) bound states. A comparison of the energy requirements of minimum-phase and self-refocused pulses is given. Further, "Butterworth" pulses are compared to "Chebyshev I" pulses and found to require more energy in general.</description><identifier>ISSN: 1064-1858</identifier><identifier>EISSN: 1096-0864</identifier><identifier>DOI: 10.1006/jmra.1995.1166</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of magnetic resonance. Series A, 1995-08, Vol.115 (2), p.189-196</ispartof><rights>1995 Academic Press</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1336-7b92d271f866cb662ff1124811d62a63cbef0203e0c9103edc47226109d290603</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Rourke, D.E.</creatorcontrib><creatorcontrib>Saunders, J.K.</creatorcontrib><title>A Simple Relationship between Total RF Pulse Energy and Magnetization Response - The Nonlinear Generalization of Parseval′s Relation</title><title>Journal of magnetic resonance. Series A</title><description>A simple expression for the total energy of an RF pulse is given in terms of the magnetization response of the pulse. It is shown to be a nonlinear generalization of Parseval′s relation and is one of an infinite number of conserved quantities, or integrals of the motion, found in the theory of nonlinear evolution equations. The simplicity of this expression enables the statement of a straightforward criterion for pulses that must have their energy reduced. It also allows the proof of some important theorems in pulse theory, including the known result that minimum-phase pulses are minimum energy pulses, and the previously unknown result that B 1-insensitive pulses must induce (possibly improper) bound states. A comparison of the energy requirements of minimum-phase and self-refocused pulses is given. Further, "Butterworth" pulses are compared to "Chebyshev I" pulses and found to require more energy in general.</description><issn>1064-1858</issn><issn>1096-0864</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqWwMvsFEmwndZOxqtqCVKCCMluOc2lduU5kh6IyMfFAPBJPgkOBjem_4b77Tx9Cl5TElBB-tdk6GdM8H8SUcn6EepTkPCIZT4-7macRzQbZKTrzfkMICTtpD72P8KPeNgbwAxjZ6tr6tW5wAe0LgMXLupUGP0zx4tl4wBMLbrXH0pb4Vq4stPr1mwmwbwIKOMLLNeC72hptQTo8g4BI87tXV3ghnYedNJ9vH_6v9BydVDI0XPxkHz1NJ8vxdTS_n92MR_NI0STh0bDIWcmGtMo4VwXnrKooZWlGacmZ5IkqoCKMJEBUTkOUKh0yxoOIkuWEk6SP4sNd5WrvHVSicXor3V5QIjqLorMoOouisxiA7ABA-GqnwQmvNFgFpXagWlHW-j_0C2PTevw</recordid><startdate>199508</startdate><enddate>199508</enddate><creator>Rourke, D.E.</creator><creator>Saunders, J.K.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199508</creationdate><title>A Simple Relationship between Total RF Pulse Energy and Magnetization Response - The Nonlinear Generalization of Parseval′s Relation</title><author>Rourke, D.E. ; Saunders, J.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1336-7b92d271f866cb662ff1124811d62a63cbef0203e0c9103edc47226109d290603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rourke, D.E.</creatorcontrib><creatorcontrib>Saunders, J.K.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of magnetic resonance. Series A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rourke, D.E.</au><au>Saunders, J.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Relationship between Total RF Pulse Energy and Magnetization Response - The Nonlinear Generalization of Parseval′s Relation</atitle><jtitle>Journal of magnetic resonance. Series A</jtitle><date>1995-08</date><risdate>1995</risdate><volume>115</volume><issue>2</issue><spage>189</spage><epage>196</epage><pages>189-196</pages><issn>1064-1858</issn><eissn>1096-0864</eissn><abstract>A simple expression for the total energy of an RF pulse is given in terms of the magnetization response of the pulse. It is shown to be a nonlinear generalization of Parseval′s relation and is one of an infinite number of conserved quantities, or integrals of the motion, found in the theory of nonlinear evolution equations. The simplicity of this expression enables the statement of a straightforward criterion for pulses that must have their energy reduced. It also allows the proof of some important theorems in pulse theory, including the known result that minimum-phase pulses are minimum energy pulses, and the previously unknown result that B 1-insensitive pulses must induce (possibly improper) bound states. A comparison of the energy requirements of minimum-phase and self-refocused pulses is given. Further, "Butterworth" pulses are compared to "Chebyshev I" pulses and found to require more energy in general.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jmra.1995.1166</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1858
ispartof Journal of magnetic resonance. Series A, 1995-08, Vol.115 (2), p.189-196
issn 1064-1858
1096-0864
language eng
recordid cdi_crossref_primary_10_1006_jmra_1995_1166
source Alma/SFX Local Collection
title A Simple Relationship between Total RF Pulse Energy and Magnetization Response - The Nonlinear Generalization of Parseval′s Relation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Relationship%20between%20Total%20RF%20Pulse%20Energy%20and%20Magnetization%20Response%20-%20The%20Nonlinear%20Generalization%20of%20Parseval%E2%80%B2s%20Relation&rft.jtitle=Journal%20of%20magnetic%20resonance.%20Series%20A&rft.au=Rourke,%20D.E.&rft.date=1995-08&rft.volume=115&rft.issue=2&rft.spage=189&rft.epage=196&rft.pages=189-196&rft.issn=1064-1858&rft.eissn=1096-0864&rft_id=info:doi/10.1006/jmra.1995.1166&rft_dat=%3Celsevier_cross%3ES1064185885711667%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1064185885711667&rfr_iscdi=true