On the Pollatsek-Tversky Theorem on Risk

This paper offers remarks about, and a generalization of, the Pollatsek and Tversky theorem on a measure of risk. As in the Pollatsek-Tversky paper, attention is limited to criteria that are additive with respect to convolution. The objective is to weaken the scalar monotonicity axiom or to replace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical psychology 1994-09, Vol.38 (3), p.322-334
Hauptverfasser: Rotar, Vladimir I., Sholomitsky, Alexey G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 3
container_start_page 322
container_title Journal of mathematical psychology
container_volume 38
creator Rotar, Vladimir I.
Sholomitsky, Alexey G.
description This paper offers remarks about, and a generalization of, the Pollatsek and Tversky theorem on a measure of risk. As in the Pollatsek-Tversky paper, attention is limited to criteria that are additive with respect to convolution. The objective is to weaken the scalar monotonicity axiom or to replace it with another one to arrive at the more flexible form of an additive criterion as a finite linear combination of cumulants of higher orders. The new criterion can be taken in two different ways. The first consists of a direct generalization of the scalar monotonicity axiom. The second appeals to a continuity condition that is stronger than the usual one. This paper also discusses properties of the additive criteria and the independence axiom.
doi_str_mv 10.1006/jmps.1994.1023
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmps_1994_1023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022249684710236</els_id><sourcerecordid>S0022249684710236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-e0a197f2342f5f392540e6456d426dca5b6947f0cd52879f07b3d9a0be220c673</originalsourceid><addsrcrecordid>eNp1jztrwzAUhUVpoW7atbPHLk6vZVmyxhL6gkBKcWchS1dE8StIJpB_X5t07XQ5F77D-Qh5zGGdA_DnQ3-M61xKNkdaXJEkB8kzqCq4JgkApRllkt-SuxgPAPOfi4Q87YZ02mP6NXadniK2WX3CENtzWu9xDNin45B--9jekxunu4gPf3dFft5e681Htt29f25etpmhFZ8yBJ1L4WjBqCtdIWnJADkruWWUW6PLhksmHBhb0kpIB6IprNTQIKVguChWZH3pNWGMMaBTx-B7Hc4qB7V4qsVTLZ5q8ZyB6gLgvOrkMahoPA4GrQ9oJmVH_x_6C_kIWBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Pollatsek-Tversky Theorem on Risk</title><source>Elsevier ScienceDirect Journals</source><creator>Rotar, Vladimir I. ; Sholomitsky, Alexey G.</creator><creatorcontrib>Rotar, Vladimir I. ; Sholomitsky, Alexey G.</creatorcontrib><description>This paper offers remarks about, and a generalization of, the Pollatsek and Tversky theorem on a measure of risk. As in the Pollatsek-Tversky paper, attention is limited to criteria that are additive with respect to convolution. The objective is to weaken the scalar monotonicity axiom or to replace it with another one to arrive at the more flexible form of an additive criterion as a finite linear combination of cumulants of higher orders. The new criterion can be taken in two different ways. The first consists of a direct generalization of the scalar monotonicity axiom. The second appeals to a continuity condition that is stronger than the usual one. This paper also discusses properties of the additive criteria and the independence axiom.</description><identifier>ISSN: 0022-2496</identifier><identifier>EISSN: 1096-0880</identifier><identifier>DOI: 10.1006/jmps.1994.1023</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of mathematical psychology, 1994-09, Vol.38 (3), p.322-334</ispartof><rights>1994 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-e0a197f2342f5f392540e6456d426dca5b6947f0cd52879f07b3d9a0be220c673</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmps.1994.1023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Rotar, Vladimir I.</creatorcontrib><creatorcontrib>Sholomitsky, Alexey G.</creatorcontrib><title>On the Pollatsek-Tversky Theorem on Risk</title><title>Journal of mathematical psychology</title><description>This paper offers remarks about, and a generalization of, the Pollatsek and Tversky theorem on a measure of risk. As in the Pollatsek-Tversky paper, attention is limited to criteria that are additive with respect to convolution. The objective is to weaken the scalar monotonicity axiom or to replace it with another one to arrive at the more flexible form of an additive criterion as a finite linear combination of cumulants of higher orders. The new criterion can be taken in two different ways. The first consists of a direct generalization of the scalar monotonicity axiom. The second appeals to a continuity condition that is stronger than the usual one. This paper also discusses properties of the additive criteria and the independence axiom.</description><issn>0022-2496</issn><issn>1096-0880</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1jztrwzAUhUVpoW7atbPHLk6vZVmyxhL6gkBKcWchS1dE8StIJpB_X5t07XQ5F77D-Qh5zGGdA_DnQ3-M61xKNkdaXJEkB8kzqCq4JgkApRllkt-SuxgPAPOfi4Q87YZ02mP6NXadniK2WX3CENtzWu9xDNin45B--9jekxunu4gPf3dFft5e681Htt29f25etpmhFZ8yBJ1L4WjBqCtdIWnJADkruWWUW6PLhksmHBhb0kpIB6IprNTQIKVguChWZH3pNWGMMaBTx-B7Hc4qB7V4qsVTLZ5q8ZyB6gLgvOrkMahoPA4GrQ9oJmVH_x_6C_kIWBs</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Rotar, Vladimir I.</creator><creator>Sholomitsky, Alexey G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940901</creationdate><title>On the Pollatsek-Tversky Theorem on Risk</title><author>Rotar, Vladimir I. ; Sholomitsky, Alexey G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-e0a197f2342f5f392540e6456d426dca5b6947f0cd52879f07b3d9a0be220c673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rotar, Vladimir I.</creatorcontrib><creatorcontrib>Sholomitsky, Alexey G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rotar, Vladimir I.</au><au>Sholomitsky, Alexey G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Pollatsek-Tversky Theorem on Risk</atitle><jtitle>Journal of mathematical psychology</jtitle><date>1994-09-01</date><risdate>1994</risdate><volume>38</volume><issue>3</issue><spage>322</spage><epage>334</epage><pages>322-334</pages><issn>0022-2496</issn><eissn>1096-0880</eissn><abstract>This paper offers remarks about, and a generalization of, the Pollatsek and Tversky theorem on a measure of risk. As in the Pollatsek-Tversky paper, attention is limited to criteria that are additive with respect to convolution. The objective is to weaken the scalar monotonicity axiom or to replace it with another one to arrive at the more flexible form of an additive criterion as a finite linear combination of cumulants of higher orders. The new criterion can be taken in two different ways. The first consists of a direct generalization of the scalar monotonicity axiom. The second appeals to a continuity condition that is stronger than the usual one. This paper also discusses properties of the additive criteria and the independence axiom.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jmps.1994.1023</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2496
ispartof Journal of mathematical psychology, 1994-09, Vol.38 (3), p.322-334
issn 0022-2496
1096-0880
language eng
recordid cdi_crossref_primary_10_1006_jmps_1994_1023
source Elsevier ScienceDirect Journals
title On the Pollatsek-Tversky Theorem on Risk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Pollatsek-Tversky%20Theorem%20on%20Risk&rft.jtitle=Journal%20of%20mathematical%20psychology&rft.au=Rotar,%20Vladimir%20I.&rft.date=1994-09-01&rft.volume=38&rft.issue=3&rft.spage=322&rft.epage=334&rft.pages=322-334&rft.issn=0022-2496&rft.eissn=1096-0880&rft_id=info:doi/10.1006/jmps.1994.1023&rft_dat=%3Celsevier_cross%3ES0022249684710236%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022249684710236&rfr_iscdi=true