On the Pollatsek-Tversky Theorem on Risk
This paper offers remarks about, and a generalization of, the Pollatsek and Tversky theorem on a measure of risk. As in the Pollatsek-Tversky paper, attention is limited to criteria that are additive with respect to convolution. The objective is to weaken the scalar monotonicity axiom or to replace...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical psychology 1994-09, Vol.38 (3), p.322-334 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | 3 |
container_start_page | 322 |
container_title | Journal of mathematical psychology |
container_volume | 38 |
creator | Rotar, Vladimir I. Sholomitsky, Alexey G. |
description | This paper offers remarks about, and a generalization of, the Pollatsek and Tversky theorem on a measure of risk. As in the Pollatsek-Tversky paper, attention is limited to criteria that are additive with respect to convolution. The objective is to weaken the scalar monotonicity axiom or to replace it with another one to arrive at the more flexible form of an additive criterion as a finite linear combination of cumulants of higher orders. The new criterion can be taken in two different ways. The first consists of a direct generalization of the scalar monotonicity axiom. The second appeals to a continuity condition that is stronger than the usual one. This paper also discusses properties of the additive criteria and the independence axiom. |
doi_str_mv | 10.1006/jmps.1994.1023 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmps_1994_1023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022249684710236</els_id><sourcerecordid>S0022249684710236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-e0a197f2342f5f392540e6456d426dca5b6947f0cd52879f07b3d9a0be220c673</originalsourceid><addsrcrecordid>eNp1jztrwzAUhUVpoW7atbPHLk6vZVmyxhL6gkBKcWchS1dE8StIJpB_X5t07XQ5F77D-Qh5zGGdA_DnQ3-M61xKNkdaXJEkB8kzqCq4JgkApRllkt-SuxgPAPOfi4Q87YZ02mP6NXadniK2WX3CENtzWu9xDNin45B--9jekxunu4gPf3dFft5e681Htt29f25etpmhFZ8yBJ1L4WjBqCtdIWnJADkruWWUW6PLhksmHBhb0kpIB6IprNTQIKVguChWZH3pNWGMMaBTx-B7Hc4qB7V4qsVTLZ5q8ZyB6gLgvOrkMahoPA4GrQ9oJmVH_x_6C_kIWBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Pollatsek-Tversky Theorem on Risk</title><source>Elsevier ScienceDirect Journals</source><creator>Rotar, Vladimir I. ; Sholomitsky, Alexey G.</creator><creatorcontrib>Rotar, Vladimir I. ; Sholomitsky, Alexey G.</creatorcontrib><description>This paper offers remarks about, and a generalization of, the Pollatsek and Tversky theorem on a measure of risk. As in the Pollatsek-Tversky paper, attention is limited to criteria that are additive with respect to convolution. The objective is to weaken the scalar monotonicity axiom or to replace it with another one to arrive at the more flexible form of an additive criterion as a finite linear combination of cumulants of higher orders. The new criterion can be taken in two different ways. The first consists of a direct generalization of the scalar monotonicity axiom. The second appeals to a continuity condition that is stronger than the usual one. This paper also discusses properties of the additive criteria and the independence axiom.</description><identifier>ISSN: 0022-2496</identifier><identifier>EISSN: 1096-0880</identifier><identifier>DOI: 10.1006/jmps.1994.1023</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of mathematical psychology, 1994-09, Vol.38 (3), p.322-334</ispartof><rights>1994 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-e0a197f2342f5f392540e6456d426dca5b6947f0cd52879f07b3d9a0be220c673</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmps.1994.1023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Rotar, Vladimir I.</creatorcontrib><creatorcontrib>Sholomitsky, Alexey G.</creatorcontrib><title>On the Pollatsek-Tversky Theorem on Risk</title><title>Journal of mathematical psychology</title><description>This paper offers remarks about, and a generalization of, the Pollatsek and Tversky theorem on a measure of risk. As in the Pollatsek-Tversky paper, attention is limited to criteria that are additive with respect to convolution. The objective is to weaken the scalar monotonicity axiom or to replace it with another one to arrive at the more flexible form of an additive criterion as a finite linear combination of cumulants of higher orders. The new criterion can be taken in two different ways. The first consists of a direct generalization of the scalar monotonicity axiom. The second appeals to a continuity condition that is stronger than the usual one. This paper also discusses properties of the additive criteria and the independence axiom.</description><issn>0022-2496</issn><issn>1096-0880</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1jztrwzAUhUVpoW7atbPHLk6vZVmyxhL6gkBKcWchS1dE8StIJpB_X5t07XQ5F77D-Qh5zGGdA_DnQ3-M61xKNkdaXJEkB8kzqCq4JgkApRllkt-SuxgPAPOfi4Q87YZ02mP6NXadniK2WX3CENtzWu9xDNin45B--9jekxunu4gPf3dFft5e681Htt29f25etpmhFZ8yBJ1L4WjBqCtdIWnJADkruWWUW6PLhksmHBhb0kpIB6IprNTQIKVguChWZH3pNWGMMaBTx-B7Hc4qB7V4qsVTLZ5q8ZyB6gLgvOrkMahoPA4GrQ9oJmVH_x_6C_kIWBs</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Rotar, Vladimir I.</creator><creator>Sholomitsky, Alexey G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940901</creationdate><title>On the Pollatsek-Tversky Theorem on Risk</title><author>Rotar, Vladimir I. ; Sholomitsky, Alexey G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-e0a197f2342f5f392540e6456d426dca5b6947f0cd52879f07b3d9a0be220c673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rotar, Vladimir I.</creatorcontrib><creatorcontrib>Sholomitsky, Alexey G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rotar, Vladimir I.</au><au>Sholomitsky, Alexey G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Pollatsek-Tversky Theorem on Risk</atitle><jtitle>Journal of mathematical psychology</jtitle><date>1994-09-01</date><risdate>1994</risdate><volume>38</volume><issue>3</issue><spage>322</spage><epage>334</epage><pages>322-334</pages><issn>0022-2496</issn><eissn>1096-0880</eissn><abstract>This paper offers remarks about, and a generalization of, the Pollatsek and Tversky theorem on a measure of risk. As in the Pollatsek-Tversky paper, attention is limited to criteria that are additive with respect to convolution. The objective is to weaken the scalar monotonicity axiom or to replace it with another one to arrive at the more flexible form of an additive criterion as a finite linear combination of cumulants of higher orders. The new criterion can be taken in two different ways. The first consists of a direct generalization of the scalar monotonicity axiom. The second appeals to a continuity condition that is stronger than the usual one. This paper also discusses properties of the additive criteria and the independence axiom.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jmps.1994.1023</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2496 |
ispartof | Journal of mathematical psychology, 1994-09, Vol.38 (3), p.322-334 |
issn | 0022-2496 1096-0880 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jmps_1994_1023 |
source | Elsevier ScienceDirect Journals |
title | On the Pollatsek-Tversky Theorem on Risk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Pollatsek-Tversky%20Theorem%20on%20Risk&rft.jtitle=Journal%20of%20mathematical%20psychology&rft.au=Rotar,%20Vladimir%20I.&rft.date=1994-09-01&rft.volume=38&rft.issue=3&rft.spage=322&rft.epage=334&rft.pages=322-334&rft.issn=0022-2496&rft.eissn=1096-0880&rft_id=info:doi/10.1006/jmps.1994.1023&rft_dat=%3Celsevier_cross%3ES0022249684710236%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022249684710236&rfr_iscdi=true |