On C. Neumann's Method for Second-Order Elliptic Systems in Domains with Non-smooth Boundaries

In this paper we investigate the convergence of Carl Neumann's method for the solution of Dirichlet or Neumann boundary values for second-order elliptic problems in domains with non-smooth boundaries. We prove that 12I+K, where K is the double-layer potential, is a contraction in H1/2(Γ) when a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2001-10, Vol.262 (2), p.733-748
Hauptverfasser: Steinbach, O., Wendland, W.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 748
container_issue 2
container_start_page 733
container_title Journal of mathematical analysis and applications
container_volume 262
creator Steinbach, O.
Wendland, W.L.
description In this paper we investigate the convergence of Carl Neumann's method for the solution of Dirichlet or Neumann boundary values for second-order elliptic problems in domains with non-smooth boundaries. We prove that 12I+K, where K is the double-layer potential, is a contraction in H1/2(Γ) when an energy norm is used that is induced by the inverse of the single-layer potential.
doi_str_mv 10.1006/jmaa.2001.7615
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmaa_2001_7615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X01976152</els_id><sourcerecordid>S0022247X01976152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-e763a26131dff7fbf16c24a03bcf2fdb2291f222cd3042466363942e55b460d23</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwMntBTAk-O3HaEUr5kEo7FCQmLMcfqlFiV3YK6r8nUZGYmO6G93nv9CB0CSQHQvjNZytlTgmBvOJQHqERkCnPyATYMRoRQmlGi-r9FJ2l9NmnoKxghD5WHs9yvDS7Vnp_nfCL6TZBYxsiXhsVvM5WUZuI503jtp1TeL1PnWkTdh7fh1Y6n_C36zZ4GXyW2hD69S7svJbRmXSOTqxskrn4nWP09jB_nT1li9Xj8-x2kSlW8i4zFWeScmCgra1sbYErWkjCamWp1TWlU7CUUqUZKWjBOeNsWlBTlnXBiaZsjPJDr4ohpWis2EbXyrgXQMRgRwx2xGBHDHZ64OoAbGVSsrFReuXSH1UAKQGKPjc55Ez__ZczUSTljFdGu2hUJ3Rw_534ARZjd7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On C. Neumann's Method for Second-Order Elliptic Systems in Domains with Non-smooth Boundaries</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Steinbach, O. ; Wendland, W.L.</creator><creatorcontrib>Steinbach, O. ; Wendland, W.L.</creatorcontrib><description>In this paper we investigate the convergence of Carl Neumann's method for the solution of Dirichlet or Neumann boundary values for second-order elliptic problems in domains with non-smooth boundaries. We prove that 12I+K, where K is the double-layer potential, is a contraction in H1/2(Γ) when an energy norm is used that is induced by the inverse of the single-layer potential.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1006/jmaa.2001.7615</identifier><identifier>CODEN: JMANAK</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>boundary integral equations ; Exact sciences and technology ; Integral equations ; Mathematical analysis ; Mathematics ; Neumann series ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical analysis and applications, 2001-10, Vol.262 (2), p.733-748</ispartof><rights>2001 Academic Press</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-e763a26131dff7fbf16c24a03bcf2fdb2291f222cd3042466363942e55b460d23</citedby><cites>FETCH-LOGICAL-c356t-e763a26131dff7fbf16c24a03bcf2fdb2291f222cd3042466363942e55b460d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmaa.2001.7615$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14105114$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Steinbach, O.</creatorcontrib><creatorcontrib>Wendland, W.L.</creatorcontrib><title>On C. Neumann's Method for Second-Order Elliptic Systems in Domains with Non-smooth Boundaries</title><title>Journal of mathematical analysis and applications</title><description>In this paper we investigate the convergence of Carl Neumann's method for the solution of Dirichlet or Neumann boundary values for second-order elliptic problems in domains with non-smooth boundaries. We prove that 12I+K, where K is the double-layer potential, is a contraction in H1/2(Γ) when an energy norm is used that is induced by the inverse of the single-layer potential.</description><subject>boundary integral equations</subject><subject>Exact sciences and technology</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Neumann series</subject><subject>Sciences and techniques of general use</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwMntBTAk-O3HaEUr5kEo7FCQmLMcfqlFiV3YK6r8nUZGYmO6G93nv9CB0CSQHQvjNZytlTgmBvOJQHqERkCnPyATYMRoRQmlGi-r9FJ2l9NmnoKxghD5WHs9yvDS7Vnp_nfCL6TZBYxsiXhsVvM5WUZuI503jtp1TeL1PnWkTdh7fh1Y6n_C36zZ4GXyW2hD69S7svJbRmXSOTqxskrn4nWP09jB_nT1li9Xj8-x2kSlW8i4zFWeScmCgra1sbYErWkjCamWp1TWlU7CUUqUZKWjBOeNsWlBTlnXBiaZsjPJDr4ohpWis2EbXyrgXQMRgRwx2xGBHDHZ64OoAbGVSsrFReuXSH1UAKQGKPjc55Ez__ZczUSTljFdGu2hUJ3Rw_534ARZjd7I</recordid><startdate>20011015</startdate><enddate>20011015</enddate><creator>Steinbach, O.</creator><creator>Wendland, W.L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20011015</creationdate><title>On C. Neumann's Method for Second-Order Elliptic Systems in Domains with Non-smooth Boundaries</title><author>Steinbach, O. ; Wendland, W.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-e763a26131dff7fbf16c24a03bcf2fdb2291f222cd3042466363942e55b460d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>boundary integral equations</topic><topic>Exact sciences and technology</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Neumann series</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinbach, O.</creatorcontrib><creatorcontrib>Wendland, W.L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinbach, O.</au><au>Wendland, W.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On C. Neumann's Method for Second-Order Elliptic Systems in Domains with Non-smooth Boundaries</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2001-10-15</date><risdate>2001</risdate><volume>262</volume><issue>2</issue><spage>733</spage><epage>748</epage><pages>733-748</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><coden>JMANAK</coden><abstract>In this paper we investigate the convergence of Carl Neumann's method for the solution of Dirichlet or Neumann boundary values for second-order elliptic problems in domains with non-smooth boundaries. We prove that 12I+K, where K is the double-layer potential, is a contraction in H1/2(Γ) when an energy norm is used that is induced by the inverse of the single-layer potential.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmaa.2001.7615</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2001-10, Vol.262 (2), p.733-748
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1006_jmaa_2001_7615
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects boundary integral equations
Exact sciences and technology
Integral equations
Mathematical analysis
Mathematics
Neumann series
Sciences and techniques of general use
title On C. Neumann's Method for Second-Order Elliptic Systems in Domains with Non-smooth Boundaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20C.%20Neumann's%20Method%20for%20Second-Order%20Elliptic%20Systems%20in%20Domains%20with%20Non-smooth%20Boundaries&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Steinbach,%20O.&rft.date=2001-10-15&rft.volume=262&rft.issue=2&rft.spage=733&rft.epage=748&rft.pages=733-748&rft.issn=0022-247X&rft.eissn=1096-0813&rft.coden=JMANAK&rft_id=info:doi/10.1006/jmaa.2001.7615&rft_dat=%3Celsevier_cross%3ES0022247X01976152%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X01976152&rfr_iscdi=true