Multiple Model Methods in Path Following

Path following is difficult when the observation rate is low. Multiple model estimators incorporating multisensor fusion have proven useful in this application. This paper shows the advantage of a recently developed multiple model algorithm. Performance comparisons with some current algorithms are p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2000-11, Vol.251 (2), p.609-623
Hauptverfasser: Leondes, C.T, Sworder, D.D, Boyd, J.E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 623
container_issue 2
container_start_page 609
container_title Journal of mathematical analysis and applications
container_volume 251
creator Leondes, C.T
Sworder, D.D
Boyd, J.E
description Path following is difficult when the observation rate is low. Multiple model estimators incorporating multisensor fusion have proven useful in this application. This paper shows the advantage of a recently developed multiple model algorithm. Performance comparisons with some current algorithms are presented.
doi_str_mv 10.1006/jmaa.2000.7034
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmaa_2000_7034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X00970343</els_id><sourcerecordid>S0022247X00970343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-2585de280bbcaa567d4a023fcc61d17be8891c8c7ee408885af88f21389ca02d3</originalsourceid><addsrcrecordid>eNp1j7FOwzAQQC0EEqWwMkdiYUk423FyHVFFAakVDCCxWa59oa7cpLIDiL8nUREb0y3v3d1j7JJDwQGqm-3OmEIAQFGDLI_YhMOsygG5PGYTACFyUdZvp-wspS0A56rmE3a9-gi93wfKVp2jkK2o33QuZb7Nnk2_yRZdCN2Xb9_P2UljQqKL3zllr4u7l_lDvny6f5zfLnMrVdnnQqFyJBDWa2uMqmpXGhCysbbijtdrQpxxi7YmKgERlWkQG8ElzuwAOjllxWGvjV1KkRq9j35n4rfmoMdOPXbqsVOPnYNwdRD2JlkTmmha69OfhVKqSgwUHigafv_0FHWynlpLzkeyvXad_-_AD1H1ZLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiple Model Methods in Path Following</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Leondes, C.T ; Sworder, D.D ; Boyd, J.E</creator><creatorcontrib>Leondes, C.T ; Sworder, D.D ; Boyd, J.E</creatorcontrib><description>Path following is difficult when the observation rate is low. Multiple model estimators incorporating multisensor fusion have proven useful in this application. This paper shows the advantage of a recently developed multiple model algorithm. Performance comparisons with some current algorithms are presented.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1006/jmaa.2000.7034</identifier><identifier>CODEN: JMANAK</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Applied sciences ; Calculus of variations and optimal control ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Mathematical analysis ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical methods in optimization and calculus of variations ; Sciences and techniques of general use ; System theory</subject><ispartof>Journal of mathematical analysis and applications, 2000-11, Vol.251 (2), p.609-623</ispartof><rights>2000 Academic Press</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-2585de280bbcaa567d4a023fcc61d17be8891c8c7ee408885af88f21389ca02d3</citedby><cites>FETCH-LOGICAL-c354t-2585de280bbcaa567d4a023fcc61d17be8891c8c7ee408885af88f21389ca02d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmaa.2000.7034$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=833562$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Leondes, C.T</creatorcontrib><creatorcontrib>Sworder, D.D</creatorcontrib><creatorcontrib>Boyd, J.E</creatorcontrib><title>Multiple Model Methods in Path Following</title><title>Journal of mathematical analysis and applications</title><description>Path following is difficult when the observation rate is low. Multiple model estimators incorporating multisensor fusion have proven useful in this application. This paper shows the advantage of a recently developed multiple model algorithm. Performance comparisons with some current algorithms are presented.</description><subject>Applied sciences</subject><subject>Calculus of variations and optimal control</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical methods in optimization and calculus of variations</subject><subject>Sciences and techniques of general use</subject><subject>System theory</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1j7FOwzAQQC0EEqWwMkdiYUk423FyHVFFAakVDCCxWa59oa7cpLIDiL8nUREb0y3v3d1j7JJDwQGqm-3OmEIAQFGDLI_YhMOsygG5PGYTACFyUdZvp-wspS0A56rmE3a9-gi93wfKVp2jkK2o33QuZb7Nnk2_yRZdCN2Xb9_P2UljQqKL3zllr4u7l_lDvny6f5zfLnMrVdnnQqFyJBDWa2uMqmpXGhCysbbijtdrQpxxi7YmKgERlWkQG8ElzuwAOjllxWGvjV1KkRq9j35n4rfmoMdOPXbqsVOPnYNwdRD2JlkTmmha69OfhVKqSgwUHigafv_0FHWynlpLzkeyvXad_-_AD1H1ZLg</recordid><startdate>20001115</startdate><enddate>20001115</enddate><creator>Leondes, C.T</creator><creator>Sworder, D.D</creator><creator>Boyd, J.E</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001115</creationdate><title>Multiple Model Methods in Path Following</title><author>Leondes, C.T ; Sworder, D.D ; Boyd, J.E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-2585de280bbcaa567d4a023fcc61d17be8891c8c7ee408885af88f21389ca02d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Calculus of variations and optimal control</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical methods in optimization and calculus of variations</topic><topic>Sciences and techniques of general use</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leondes, C.T</creatorcontrib><creatorcontrib>Sworder, D.D</creatorcontrib><creatorcontrib>Boyd, J.E</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leondes, C.T</au><au>Sworder, D.D</au><au>Boyd, J.E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Model Methods in Path Following</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2000-11-15</date><risdate>2000</risdate><volume>251</volume><issue>2</issue><spage>609</spage><epage>623</epage><pages>609-623</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><coden>JMANAK</coden><abstract>Path following is difficult when the observation rate is low. Multiple model estimators incorporating multisensor fusion have proven useful in this application. This paper shows the advantage of a recently developed multiple model algorithm. Performance comparisons with some current algorithms are presented.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmaa.2000.7034</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2000-11, Vol.251 (2), p.609-623
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1006_jmaa_2000_7034
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Applied sciences
Calculus of variations and optimal control
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Mathematical analysis
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Numerical methods in optimization and calculus of variations
Sciences and techniques of general use
System theory
title Multiple Model Methods in Path Following
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A11%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Model%20Methods%20in%20Path%20Following&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Leondes,%20C.T&rft.date=2000-11-15&rft.volume=251&rft.issue=2&rft.spage=609&rft.epage=623&rft.pages=609-623&rft.issn=0022-247X&rft.eissn=1096-0813&rft.coden=JMANAK&rft_id=info:doi/10.1006/jmaa.2000.7034&rft_dat=%3Celsevier_cross%3ES0022247X00970343%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X00970343&rfr_iscdi=true