Multiple Model Methods in Path Following
Path following is difficult when the observation rate is low. Multiple model estimators incorporating multisensor fusion have proven useful in this application. This paper shows the advantage of a recently developed multiple model algorithm. Performance comparisons with some current algorithms are p...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2000-11, Vol.251 (2), p.609-623 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 623 |
---|---|
container_issue | 2 |
container_start_page | 609 |
container_title | Journal of mathematical analysis and applications |
container_volume | 251 |
creator | Leondes, C.T Sworder, D.D Boyd, J.E |
description | Path following is difficult when the observation rate is low. Multiple model estimators incorporating multisensor fusion have proven useful in this application. This paper shows the advantage of a recently developed multiple model algorithm. Performance comparisons with some current algorithms are presented. |
doi_str_mv | 10.1006/jmaa.2000.7034 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmaa_2000_7034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X00970343</els_id><sourcerecordid>S0022247X00970343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-2585de280bbcaa567d4a023fcc61d17be8891c8c7ee408885af88f21389ca02d3</originalsourceid><addsrcrecordid>eNp1j7FOwzAQQC0EEqWwMkdiYUk423FyHVFFAakVDCCxWa59oa7cpLIDiL8nUREb0y3v3d1j7JJDwQGqm-3OmEIAQFGDLI_YhMOsygG5PGYTACFyUdZvp-wspS0A56rmE3a9-gi93wfKVp2jkK2o33QuZb7Nnk2_yRZdCN2Xb9_P2UljQqKL3zllr4u7l_lDvny6f5zfLnMrVdnnQqFyJBDWa2uMqmpXGhCysbbijtdrQpxxi7YmKgERlWkQG8ElzuwAOjllxWGvjV1KkRq9j35n4rfmoMdOPXbqsVOPnYNwdRD2JlkTmmha69OfhVKqSgwUHigafv_0FHWynlpLzkeyvXad_-_AD1H1ZLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiple Model Methods in Path Following</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Leondes, C.T ; Sworder, D.D ; Boyd, J.E</creator><creatorcontrib>Leondes, C.T ; Sworder, D.D ; Boyd, J.E</creatorcontrib><description>Path following is difficult when the observation rate is low. Multiple model estimators incorporating multisensor fusion have proven useful in this application. This paper shows the advantage of a recently developed multiple model algorithm. Performance comparisons with some current algorithms are presented.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1006/jmaa.2000.7034</identifier><identifier>CODEN: JMANAK</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Applied sciences ; Calculus of variations and optimal control ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Mathematical analysis ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical methods in optimization and calculus of variations ; Sciences and techniques of general use ; System theory</subject><ispartof>Journal of mathematical analysis and applications, 2000-11, Vol.251 (2), p.609-623</ispartof><rights>2000 Academic Press</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-2585de280bbcaa567d4a023fcc61d17be8891c8c7ee408885af88f21389ca02d3</citedby><cites>FETCH-LOGICAL-c354t-2585de280bbcaa567d4a023fcc61d17be8891c8c7ee408885af88f21389ca02d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmaa.2000.7034$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=833562$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Leondes, C.T</creatorcontrib><creatorcontrib>Sworder, D.D</creatorcontrib><creatorcontrib>Boyd, J.E</creatorcontrib><title>Multiple Model Methods in Path Following</title><title>Journal of mathematical analysis and applications</title><description>Path following is difficult when the observation rate is low. Multiple model estimators incorporating multisensor fusion have proven useful in this application. This paper shows the advantage of a recently developed multiple model algorithm. Performance comparisons with some current algorithms are presented.</description><subject>Applied sciences</subject><subject>Calculus of variations and optimal control</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical methods in optimization and calculus of variations</subject><subject>Sciences and techniques of general use</subject><subject>System theory</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1j7FOwzAQQC0EEqWwMkdiYUk423FyHVFFAakVDCCxWa59oa7cpLIDiL8nUREb0y3v3d1j7JJDwQGqm-3OmEIAQFGDLI_YhMOsygG5PGYTACFyUdZvp-wspS0A56rmE3a9-gi93wfKVp2jkK2o33QuZb7Nnk2_yRZdCN2Xb9_P2UljQqKL3zllr4u7l_lDvny6f5zfLnMrVdnnQqFyJBDWa2uMqmpXGhCysbbijtdrQpxxi7YmKgERlWkQG8ElzuwAOjllxWGvjV1KkRq9j35n4rfmoMdOPXbqsVOPnYNwdRD2JlkTmmha69OfhVKqSgwUHigafv_0FHWynlpLzkeyvXad_-_AD1H1ZLg</recordid><startdate>20001115</startdate><enddate>20001115</enddate><creator>Leondes, C.T</creator><creator>Sworder, D.D</creator><creator>Boyd, J.E</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001115</creationdate><title>Multiple Model Methods in Path Following</title><author>Leondes, C.T ; Sworder, D.D ; Boyd, J.E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-2585de280bbcaa567d4a023fcc61d17be8891c8c7ee408885af88f21389ca02d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Calculus of variations and optimal control</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical methods in optimization and calculus of variations</topic><topic>Sciences and techniques of general use</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leondes, C.T</creatorcontrib><creatorcontrib>Sworder, D.D</creatorcontrib><creatorcontrib>Boyd, J.E</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leondes, C.T</au><au>Sworder, D.D</au><au>Boyd, J.E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Model Methods in Path Following</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2000-11-15</date><risdate>2000</risdate><volume>251</volume><issue>2</issue><spage>609</spage><epage>623</epage><pages>609-623</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><coden>JMANAK</coden><abstract>Path following is difficult when the observation rate is low. Multiple model estimators incorporating multisensor fusion have proven useful in this application. This paper shows the advantage of a recently developed multiple model algorithm. Performance comparisons with some current algorithms are presented.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmaa.2000.7034</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2000-11, Vol.251 (2), p.609-623 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jmaa_2000_7034 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Applied sciences Calculus of variations and optimal control Computer science control theory systems Control theory. Systems Exact sciences and technology Mathematical analysis Mathematics Methods of scientific computing (including symbolic computation, algebraic computation) Numerical analysis Numerical analysis. Scientific computation Numerical methods in mathematical programming, optimization and calculus of variations Numerical methods in optimization and calculus of variations Sciences and techniques of general use System theory |
title | Multiple Model Methods in Path Following |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A11%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Model%20Methods%20in%20Path%20Following&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Leondes,%20C.T&rft.date=2000-11-15&rft.volume=251&rft.issue=2&rft.spage=609&rft.epage=623&rft.pages=609-623&rft.issn=0022-247X&rft.eissn=1096-0813&rft.coden=JMANAK&rft_id=info:doi/10.1006/jmaa.2000.7034&rft_dat=%3Celsevier_cross%3ES0022247X00970343%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X00970343&rfr_iscdi=true |