Oscillatory and Nonoscillatory Delay Equations with Piecewise Constant Argument
We introduce a new technique to analyze certain difference equations to obtain some new type and also “best possible” oscillation and nonoscillation criteria for the nonautonomous delay differential equation with piecewise constant argument of the form y′(t)+a(t)y(t)+b(t)y([t−1])=0, where a(t) and b...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2000-08, Vol.248 (2), p.385-401 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 401 |
---|---|
container_issue | 2 |
container_start_page | 385 |
container_title | Journal of mathematical analysis and applications |
container_volume | 248 |
creator | Shen, J.H. Stavroulakis, I.P. |
description | We introduce a new technique to analyze certain difference equations to obtain some new type and also “best possible” oscillation and nonoscillation criteria for the nonautonomous delay differential equation with piecewise constant argument of the form y′(t)+a(t)y(t)+b(t)y([t−1])=0, where a(t) and b(t) are continuous functions on [−1,∞), b(t)≥0, and [·] denotes the greatest integer function. |
doi_str_mv | 10.1006/jmaa.2000.6908 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmaa_2000_6908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X00969087</els_id><sourcerecordid>S0022247X00969087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-7031d48dec02e96aca7d3aa0924d6a0053376a702bc7a8491cef5c1b3672e06f3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwMmdgTTnbiZ2MVSkfEqIMILFZV-cCrtKk2C5V_z2JigQL00mv3ufu9DB2yWHCAdT1ao04EQAwUSUUR2zEoVQpFFwesxGAEKnI9NspOwthBcB5rvmILRbBuqbB2Pl9gm2VPHVt9ye6oQb3yfxzi9F1bUh2Ln4kz44s7VygZNZnEduYTP37dk1tPGcnNTaBLn7mmL3ezl9m9-nj4u5hNn1MrczzmGqQvMqKiiwIKhVa1JVEhFJklUKAXEqtUINYWo1FVnJLdW75UiotCFQtx2xy2Gt9F4Kn2my8W6PfGw5m0GEGHWbQYQYdPXB1ADYYLDa1x9a68EtlOtMq62vFoUb981-OvOllUGupcp5sNFXn_rvwDTbCdFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oscillatory and Nonoscillatory Delay Equations with Piecewise Constant Argument</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shen, J.H. ; Stavroulakis, I.P.</creator><creatorcontrib>Shen, J.H. ; Stavroulakis, I.P.</creatorcontrib><description>We introduce a new technique to analyze certain difference equations to obtain some new type and also “best possible” oscillation and nonoscillation criteria for the nonautonomous delay differential equation with piecewise constant argument of the form y′(t)+a(t)y(t)+b(t)y([t−1])=0, where a(t) and b(t) are continuous functions on [−1,∞), b(t)≥0, and [·] denotes the greatest integer function.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1006/jmaa.2000.6908</identifier><identifier>CODEN: JMANAK</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Difference and functional equations, recurrence relations ; differential equation ; Exact sciences and technology ; Finite differences and functional equations ; Mathematical analysis ; Mathematics ; nonoscillation ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; oscillation ; piecewise constant argument ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical analysis and applications, 2000-08, Vol.248 (2), p.385-401</ispartof><rights>2000 Academic Press</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-7031d48dec02e96aca7d3aa0924d6a0053376a702bc7a8491cef5c1b3672e06f3</citedby><cites>FETCH-LOGICAL-c355t-7031d48dec02e96aca7d3aa0924d6a0053376a702bc7a8491cef5c1b3672e06f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022247X00969087$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1474764$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, J.H.</creatorcontrib><creatorcontrib>Stavroulakis, I.P.</creatorcontrib><title>Oscillatory and Nonoscillatory Delay Equations with Piecewise Constant Argument</title><title>Journal of mathematical analysis and applications</title><description>We introduce a new technique to analyze certain difference equations to obtain some new type and also “best possible” oscillation and nonoscillation criteria for the nonautonomous delay differential equation with piecewise constant argument of the form y′(t)+a(t)y(t)+b(t)y([t−1])=0, where a(t) and b(t) are continuous functions on [−1,∞), b(t)≥0, and [·] denotes the greatest integer function.</description><subject>Difference and functional equations, recurrence relations</subject><subject>differential equation</subject><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>nonoscillation</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>oscillation</subject><subject>piecewise constant argument</subject><subject>Sciences and techniques of general use</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwMmdgTTnbiZ2MVSkfEqIMILFZV-cCrtKk2C5V_z2JigQL00mv3ufu9DB2yWHCAdT1ao04EQAwUSUUR2zEoVQpFFwesxGAEKnI9NspOwthBcB5rvmILRbBuqbB2Pl9gm2VPHVt9ye6oQb3yfxzi9F1bUh2Ln4kz44s7VygZNZnEduYTP37dk1tPGcnNTaBLn7mmL3ezl9m9-nj4u5hNn1MrczzmGqQvMqKiiwIKhVa1JVEhFJklUKAXEqtUINYWo1FVnJLdW75UiotCFQtx2xy2Gt9F4Kn2my8W6PfGw5m0GEGHWbQYQYdPXB1ADYYLDa1x9a68EtlOtMq62vFoUb981-OvOllUGupcp5sNFXn_rvwDTbCdFI</recordid><startdate>20000815</startdate><enddate>20000815</enddate><creator>Shen, J.H.</creator><creator>Stavroulakis, I.P.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000815</creationdate><title>Oscillatory and Nonoscillatory Delay Equations with Piecewise Constant Argument</title><author>Shen, J.H. ; Stavroulakis, I.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-7031d48dec02e96aca7d3aa0924d6a0053376a702bc7a8491cef5c1b3672e06f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Difference and functional equations, recurrence relations</topic><topic>differential equation</topic><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>nonoscillation</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>oscillation</topic><topic>piecewise constant argument</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, J.H.</creatorcontrib><creatorcontrib>Stavroulakis, I.P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, J.H.</au><au>Stavroulakis, I.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillatory and Nonoscillatory Delay Equations with Piecewise Constant Argument</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2000-08-15</date><risdate>2000</risdate><volume>248</volume><issue>2</issue><spage>385</spage><epage>401</epage><pages>385-401</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><coden>JMANAK</coden><abstract>We introduce a new technique to analyze certain difference equations to obtain some new type and also “best possible” oscillation and nonoscillation criteria for the nonautonomous delay differential equation with piecewise constant argument of the form y′(t)+a(t)y(t)+b(t)y([t−1])=0, where a(t) and b(t) are continuous functions on [−1,∞), b(t)≥0, and [·] denotes the greatest integer function.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmaa.2000.6908</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2000-08, Vol.248 (2), p.385-401 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jmaa_2000_6908 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Difference and functional equations, recurrence relations differential equation Exact sciences and technology Finite differences and functional equations Mathematical analysis Mathematics nonoscillation Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations oscillation piecewise constant argument Sciences and techniques of general use |
title | Oscillatory and Nonoscillatory Delay Equations with Piecewise Constant Argument |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillatory%20and%20Nonoscillatory%20Delay%20Equations%20with%20Piecewise%20Constant%20Argument&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Shen,%20J.H.&rft.date=2000-08-15&rft.volume=248&rft.issue=2&rft.spage=385&rft.epage=401&rft.pages=385-401&rft.issn=0022-247X&rft.eissn=1096-0813&rft.coden=JMANAK&rft_id=info:doi/10.1006/jmaa.2000.6908&rft_dat=%3Celsevier_cross%3ES0022247X00969087%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X00969087&rfr_iscdi=true |