Oscillatory and Nonoscillatory Delay Equations with Piecewise Constant Argument

We introduce a new technique to analyze certain difference equations to obtain some new type and also “best possible” oscillation and nonoscillation criteria for the nonautonomous delay differential equation with piecewise constant argument of the form y′(t)+a(t)y(t)+b(t)y([t−1])=0, where a(t) and b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2000-08, Vol.248 (2), p.385-401
Hauptverfasser: Shen, J.H., Stavroulakis, I.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue 2
container_start_page 385
container_title Journal of mathematical analysis and applications
container_volume 248
creator Shen, J.H.
Stavroulakis, I.P.
description We introduce a new technique to analyze certain difference equations to obtain some new type and also “best possible” oscillation and nonoscillation criteria for the nonautonomous delay differential equation with piecewise constant argument of the form y′(t)+a(t)y(t)+b(t)y([t−1])=0, where a(t) and b(t) are continuous functions on [−1,∞), b(t)≥0, and [·] denotes the greatest integer function.
doi_str_mv 10.1006/jmaa.2000.6908
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmaa_2000_6908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X00969087</els_id><sourcerecordid>S0022247X00969087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-7031d48dec02e96aca7d3aa0924d6a0053376a702bc7a8491cef5c1b3672e06f3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwMmdgTTnbiZ2MVSkfEqIMILFZV-cCrtKk2C5V_z2JigQL00mv3ufu9DB2yWHCAdT1ao04EQAwUSUUR2zEoVQpFFwesxGAEKnI9NspOwthBcB5rvmILRbBuqbB2Pl9gm2VPHVt9ye6oQb3yfxzi9F1bUh2Ln4kz44s7VygZNZnEduYTP37dk1tPGcnNTaBLn7mmL3ezl9m9-nj4u5hNn1MrczzmGqQvMqKiiwIKhVa1JVEhFJklUKAXEqtUINYWo1FVnJLdW75UiotCFQtx2xy2Gt9F4Kn2my8W6PfGw5m0GEGHWbQYQYdPXB1ADYYLDa1x9a68EtlOtMq62vFoUb981-OvOllUGupcp5sNFXn_rvwDTbCdFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oscillatory and Nonoscillatory Delay Equations with Piecewise Constant Argument</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shen, J.H. ; Stavroulakis, I.P.</creator><creatorcontrib>Shen, J.H. ; Stavroulakis, I.P.</creatorcontrib><description>We introduce a new technique to analyze certain difference equations to obtain some new type and also “best possible” oscillation and nonoscillation criteria for the nonautonomous delay differential equation with piecewise constant argument of the form y′(t)+a(t)y(t)+b(t)y([t−1])=0, where a(t) and b(t) are continuous functions on [−1,∞), b(t)≥0, and [·] denotes the greatest integer function.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1006/jmaa.2000.6908</identifier><identifier>CODEN: JMANAK</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Difference and functional equations, recurrence relations ; differential equation ; Exact sciences and technology ; Finite differences and functional equations ; Mathematical analysis ; Mathematics ; nonoscillation ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; oscillation ; piecewise constant argument ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical analysis and applications, 2000-08, Vol.248 (2), p.385-401</ispartof><rights>2000 Academic Press</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-7031d48dec02e96aca7d3aa0924d6a0053376a702bc7a8491cef5c1b3672e06f3</citedby><cites>FETCH-LOGICAL-c355t-7031d48dec02e96aca7d3aa0924d6a0053376a702bc7a8491cef5c1b3672e06f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022247X00969087$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1474764$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, J.H.</creatorcontrib><creatorcontrib>Stavroulakis, I.P.</creatorcontrib><title>Oscillatory and Nonoscillatory Delay Equations with Piecewise Constant Argument</title><title>Journal of mathematical analysis and applications</title><description>We introduce a new technique to analyze certain difference equations to obtain some new type and also “best possible” oscillation and nonoscillation criteria for the nonautonomous delay differential equation with piecewise constant argument of the form y′(t)+a(t)y(t)+b(t)y([t−1])=0, where a(t) and b(t) are continuous functions on [−1,∞), b(t)≥0, and [·] denotes the greatest integer function.</description><subject>Difference and functional equations, recurrence relations</subject><subject>differential equation</subject><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>nonoscillation</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>oscillation</subject><subject>piecewise constant argument</subject><subject>Sciences and techniques of general use</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwMmdgTTnbiZ2MVSkfEqIMILFZV-cCrtKk2C5V_z2JigQL00mv3ufu9DB2yWHCAdT1ao04EQAwUSUUR2zEoVQpFFwesxGAEKnI9NspOwthBcB5rvmILRbBuqbB2Pl9gm2VPHVt9ye6oQb3yfxzi9F1bUh2Ln4kz44s7VygZNZnEduYTP37dk1tPGcnNTaBLn7mmL3ezl9m9-nj4u5hNn1MrczzmGqQvMqKiiwIKhVa1JVEhFJklUKAXEqtUINYWo1FVnJLdW75UiotCFQtx2xy2Gt9F4Kn2my8W6PfGw5m0GEGHWbQYQYdPXB1ADYYLDa1x9a68EtlOtMq62vFoUb981-OvOllUGupcp5sNFXn_rvwDTbCdFI</recordid><startdate>20000815</startdate><enddate>20000815</enddate><creator>Shen, J.H.</creator><creator>Stavroulakis, I.P.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000815</creationdate><title>Oscillatory and Nonoscillatory Delay Equations with Piecewise Constant Argument</title><author>Shen, J.H. ; Stavroulakis, I.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-7031d48dec02e96aca7d3aa0924d6a0053376a702bc7a8491cef5c1b3672e06f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Difference and functional equations, recurrence relations</topic><topic>differential equation</topic><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>nonoscillation</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>oscillation</topic><topic>piecewise constant argument</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, J.H.</creatorcontrib><creatorcontrib>Stavroulakis, I.P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, J.H.</au><au>Stavroulakis, I.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillatory and Nonoscillatory Delay Equations with Piecewise Constant Argument</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2000-08-15</date><risdate>2000</risdate><volume>248</volume><issue>2</issue><spage>385</spage><epage>401</epage><pages>385-401</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><coden>JMANAK</coden><abstract>We introduce a new technique to analyze certain difference equations to obtain some new type and also “best possible” oscillation and nonoscillation criteria for the nonautonomous delay differential equation with piecewise constant argument of the form y′(t)+a(t)y(t)+b(t)y([t−1])=0, where a(t) and b(t) are continuous functions on [−1,∞), b(t)≥0, and [·] denotes the greatest integer function.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmaa.2000.6908</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2000-08, Vol.248 (2), p.385-401
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1006_jmaa_2000_6908
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Difference and functional equations, recurrence relations
differential equation
Exact sciences and technology
Finite differences and functional equations
Mathematical analysis
Mathematics
nonoscillation
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
oscillation
piecewise constant argument
Sciences and techniques of general use
title Oscillatory and Nonoscillatory Delay Equations with Piecewise Constant Argument
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillatory%20and%20Nonoscillatory%20Delay%20Equations%20with%20Piecewise%20Constant%20Argument&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Shen,%20J.H.&rft.date=2000-08-15&rft.volume=248&rft.issue=2&rft.spage=385&rft.epage=401&rft.pages=385-401&rft.issn=0022-247X&rft.eissn=1096-0813&rft.coden=JMANAK&rft_id=info:doi/10.1006/jmaa.2000.6908&rft_dat=%3Celsevier_cross%3ES0022247X00969087%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X00969087&rfr_iscdi=true