Stability of Non-Homentropic, Inviscid, Compressible Shear Flows
For non-homentropic, inviscid, compressible shear flows, the equivalent of Squire's theorem is proved. It is shown that a shear free basic flow does not support subsonic modes. Further, it is shown that the instability region for subsonic disturbances is a semi-ellipse type region, which depend...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2000-01, Vol.241 (1), p.56-72 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 56 |
container_title | Journal of mathematical analysis and applications |
container_volume | 241 |
creator | Padmini, M. Subbiah, M. |
description | For non-homentropic, inviscid, compressible shear flows, the equivalent of Squire's theorem is proved. It is shown that a shear free basic flow does not support subsonic modes. Further, it is shown that the instability region for subsonic disturbances is a semi-ellipse type region, which depends on the Mach number, wave number, and depth of the fluid layer. Under an approximation, two estimates for the growth rate of an unstable subsonic mode are obtained. For unbounded flows, a sufficient condition for stability to supersonic disturbances and an estimate for the growth rate of an unstable supersonic disturbance are given. |
doi_str_mv | 10.1006/jmaa.1999.6616 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmaa_1999_6616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X99966167</els_id><sourcerecordid>S0022247X99966167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-2a28f29e0a42c3f3bc93b689ddc3702d00ef3fcc3cd3998700f945c6869a41d43</originalsourceid><addsrcrecordid>eNp1jz1PwzAURS0EEqWwMmdgbMKznTjxBqoorVTBUJDYLMcfwlUSR3ZU1H_fREViYnrLPfe-g9A9hgwDsMd9K2WGOecZY5hdoBkGzlKoML1EMwBCUpKXX9foJsY9AMZFiWfoaTfI2jVuOCbeJm--S9e-Nd0QfO_UItl0BxeV04tk6ds-mBhd3Zhk921kSFaN_4m36MrKJpq73ztHn6uXj-U63b6_bpbP21TRohhSIkllCTcgc6KopbXitGYV11rREogGMJZapajSlPOqBLA8LxSrGJc51jmdo-zcq4KPMRgr-uBaGY4Cg5j8xeQvJn8x-Y_AwxnoZVSysUF2ysU_iowbxdRbnWNmfP7gTBCjr-mU0S4YNQjt3X8LJ4TMbgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability of Non-Homentropic, Inviscid, Compressible Shear Flows</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Padmini, M. ; Subbiah, M.</creator><creatorcontrib>Padmini, M. ; Subbiah, M.</creatorcontrib><description>For non-homentropic, inviscid, compressible shear flows, the equivalent of Squire's theorem is proved. It is shown that a shear free basic flow does not support subsonic modes. Further, it is shown that the instability region for subsonic disturbances is a semi-ellipse type region, which depends on the Mach number, wave number, and depth of the fluid layer. Under an approximation, two estimates for the growth rate of an unstable subsonic mode are obtained. For unbounded flows, a sufficient condition for stability to supersonic disturbances and an estimate for the growth rate of an unstable supersonic disturbance are given.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1006/jmaa.1999.6616</identifier><identifier>CODEN: JMANAK</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematics ; Partial differential equations ; Physics ; Sciences and techniques of general use ; Thick shear flows ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of mathematical analysis and applications, 2000-01, Vol.241 (1), p.56-72</ispartof><rights>2000 Academic Press</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-2a28f29e0a42c3f3bc93b689ddc3702d00ef3fcc3cd3998700f945c6869a41d43</citedby><cites>FETCH-LOGICAL-c355t-2a28f29e0a42c3f3bc93b689ddc3702d00ef3fcc3cd3998700f945c6869a41d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmaa.1999.6616$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,4012,27906,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1270054$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Padmini, M.</creatorcontrib><creatorcontrib>Subbiah, M.</creatorcontrib><title>Stability of Non-Homentropic, Inviscid, Compressible Shear Flows</title><title>Journal of mathematical analysis and applications</title><description>For non-homentropic, inviscid, compressible shear flows, the equivalent of Squire's theorem is proved. It is shown that a shear free basic flow does not support subsonic modes. Further, it is shown that the instability region for subsonic disturbances is a semi-ellipse type region, which depends on the Mach number, wave number, and depth of the fluid layer. Under an approximation, two estimates for the growth rate of an unstable subsonic mode are obtained. For unbounded flows, a sufficient condition for stability to supersonic disturbances and an estimate for the growth rate of an unstable supersonic disturbance are given.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Thick shear flows</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAURS0EEqWwMmdgbMKznTjxBqoorVTBUJDYLMcfwlUSR3ZU1H_fREViYnrLPfe-g9A9hgwDsMd9K2WGOecZY5hdoBkGzlKoML1EMwBCUpKXX9foJsY9AMZFiWfoaTfI2jVuOCbeJm--S9e-Nd0QfO_UItl0BxeV04tk6ds-mBhd3Zhk921kSFaN_4m36MrKJpq73ztHn6uXj-U63b6_bpbP21TRohhSIkllCTcgc6KopbXitGYV11rREogGMJZapajSlPOqBLA8LxSrGJc51jmdo-zcq4KPMRgr-uBaGY4Cg5j8xeQvJn8x-Y_AwxnoZVSysUF2ysU_iowbxdRbnWNmfP7gTBCjr-mU0S4YNQjt3X8LJ4TMbgA</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Padmini, M.</creator><creator>Subbiah, M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000101</creationdate><title>Stability of Non-Homentropic, Inviscid, Compressible Shear Flows</title><author>Padmini, M. ; Subbiah, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-2a28f29e0a42c3f3bc93b689ddc3702d00ef3fcc3cd3998700f945c6869a41d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Thick shear flows</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padmini, M.</creatorcontrib><creatorcontrib>Subbiah, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padmini, M.</au><au>Subbiah, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Non-Homentropic, Inviscid, Compressible Shear Flows</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>241</volume><issue>1</issue><spage>56</spage><epage>72</epage><pages>56-72</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><coden>JMANAK</coden><abstract>For non-homentropic, inviscid, compressible shear flows, the equivalent of Squire's theorem is proved. It is shown that a shear free basic flow does not support subsonic modes. Further, it is shown that the instability region for subsonic disturbances is a semi-ellipse type region, which depends on the Mach number, wave number, and depth of the fluid layer. Under an approximation, two estimates for the growth rate of an unstable subsonic mode are obtained. For unbounded flows, a sufficient condition for stability to supersonic disturbances and an estimate for the growth rate of an unstable supersonic disturbance are given.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmaa.1999.6616</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2000-01, Vol.241 (1), p.56-72 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jmaa_1999_6616 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematics Partial differential equations Physics Sciences and techniques of general use Thick shear flows Turbulent flows, convection, and heat transfer |
title | Stability of Non-Homentropic, Inviscid, Compressible Shear Flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Non-Homentropic,%20Inviscid,%20Compressible%20Shear%20Flows&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Padmini,%20M.&rft.date=2000-01-01&rft.volume=241&rft.issue=1&rft.spage=56&rft.epage=72&rft.pages=56-72&rft.issn=0022-247X&rft.eissn=1096-0813&rft.coden=JMANAK&rft_id=info:doi/10.1006/jmaa.1999.6616&rft_dat=%3Celsevier_cross%3ES0022247X99966167%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X99966167&rfr_iscdi=true |