Stability of Non-Homentropic, Inviscid, Compressible Shear Flows

For non-homentropic, inviscid, compressible shear flows, the equivalent of Squire's theorem is proved. It is shown that a shear free basic flow does not support subsonic modes. Further, it is shown that the instability region for subsonic disturbances is a semi-ellipse type region, which depend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2000-01, Vol.241 (1), p.56-72
Hauptverfasser: Padmini, M., Subbiah, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 56
container_title Journal of mathematical analysis and applications
container_volume 241
creator Padmini, M.
Subbiah, M.
description For non-homentropic, inviscid, compressible shear flows, the equivalent of Squire's theorem is proved. It is shown that a shear free basic flow does not support subsonic modes. Further, it is shown that the instability region for subsonic disturbances is a semi-ellipse type region, which depends on the Mach number, wave number, and depth of the fluid layer. Under an approximation, two estimates for the growth rate of an unstable subsonic mode are obtained. For unbounded flows, a sufficient condition for stability to supersonic disturbances and an estimate for the growth rate of an unstable supersonic disturbance are given.
doi_str_mv 10.1006/jmaa.1999.6616
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmaa_1999_6616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X99966167</els_id><sourcerecordid>S0022247X99966167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-2a28f29e0a42c3f3bc93b689ddc3702d00ef3fcc3cd3998700f945c6869a41d43</originalsourceid><addsrcrecordid>eNp1jz1PwzAURS0EEqWwMmdgbMKznTjxBqoorVTBUJDYLMcfwlUSR3ZU1H_fREViYnrLPfe-g9A9hgwDsMd9K2WGOecZY5hdoBkGzlKoML1EMwBCUpKXX9foJsY9AMZFiWfoaTfI2jVuOCbeJm--S9e-Nd0QfO_UItl0BxeV04tk6ds-mBhd3Zhk921kSFaN_4m36MrKJpq73ztHn6uXj-U63b6_bpbP21TRohhSIkllCTcgc6KopbXitGYV11rREogGMJZapajSlPOqBLA8LxSrGJc51jmdo-zcq4KPMRgr-uBaGY4Cg5j8xeQvJn8x-Y_AwxnoZVSysUF2ysU_iowbxdRbnWNmfP7gTBCjr-mU0S4YNQjt3X8LJ4TMbgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability of Non-Homentropic, Inviscid, Compressible Shear Flows</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Padmini, M. ; Subbiah, M.</creator><creatorcontrib>Padmini, M. ; Subbiah, M.</creatorcontrib><description>For non-homentropic, inviscid, compressible shear flows, the equivalent of Squire's theorem is proved. It is shown that a shear free basic flow does not support subsonic modes. Further, it is shown that the instability region for subsonic disturbances is a semi-ellipse type region, which depends on the Mach number, wave number, and depth of the fluid layer. Under an approximation, two estimates for the growth rate of an unstable subsonic mode are obtained. For unbounded flows, a sufficient condition for stability to supersonic disturbances and an estimate for the growth rate of an unstable supersonic disturbance are given.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1006/jmaa.1999.6616</identifier><identifier>CODEN: JMANAK</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematics ; Partial differential equations ; Physics ; Sciences and techniques of general use ; Thick shear flows ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of mathematical analysis and applications, 2000-01, Vol.241 (1), p.56-72</ispartof><rights>2000 Academic Press</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-2a28f29e0a42c3f3bc93b689ddc3702d00ef3fcc3cd3998700f945c6869a41d43</citedby><cites>FETCH-LOGICAL-c355t-2a28f29e0a42c3f3bc93b689ddc3702d00ef3fcc3cd3998700f945c6869a41d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmaa.1999.6616$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,4012,27906,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1270054$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Padmini, M.</creatorcontrib><creatorcontrib>Subbiah, M.</creatorcontrib><title>Stability of Non-Homentropic, Inviscid, Compressible Shear Flows</title><title>Journal of mathematical analysis and applications</title><description>For non-homentropic, inviscid, compressible shear flows, the equivalent of Squire's theorem is proved. It is shown that a shear free basic flow does not support subsonic modes. Further, it is shown that the instability region for subsonic disturbances is a semi-ellipse type region, which depends on the Mach number, wave number, and depth of the fluid layer. Under an approximation, two estimates for the growth rate of an unstable subsonic mode are obtained. For unbounded flows, a sufficient condition for stability to supersonic disturbances and an estimate for the growth rate of an unstable supersonic disturbance are given.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Thick shear flows</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAURS0EEqWwMmdgbMKznTjxBqoorVTBUJDYLMcfwlUSR3ZU1H_fREViYnrLPfe-g9A9hgwDsMd9K2WGOecZY5hdoBkGzlKoML1EMwBCUpKXX9foJsY9AMZFiWfoaTfI2jVuOCbeJm--S9e-Nd0QfO_UItl0BxeV04tk6ds-mBhd3Zhk921kSFaN_4m36MrKJpq73ztHn6uXj-U63b6_bpbP21TRohhSIkllCTcgc6KopbXitGYV11rREogGMJZapajSlPOqBLA8LxSrGJc51jmdo-zcq4KPMRgr-uBaGY4Cg5j8xeQvJn8x-Y_AwxnoZVSysUF2ysU_iowbxdRbnWNmfP7gTBCjr-mU0S4YNQjt3X8LJ4TMbgA</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Padmini, M.</creator><creator>Subbiah, M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000101</creationdate><title>Stability of Non-Homentropic, Inviscid, Compressible Shear Flows</title><author>Padmini, M. ; Subbiah, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-2a28f29e0a42c3f3bc93b689ddc3702d00ef3fcc3cd3998700f945c6869a41d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Thick shear flows</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padmini, M.</creatorcontrib><creatorcontrib>Subbiah, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padmini, M.</au><au>Subbiah, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Non-Homentropic, Inviscid, Compressible Shear Flows</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>241</volume><issue>1</issue><spage>56</spage><epage>72</epage><pages>56-72</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><coden>JMANAK</coden><abstract>For non-homentropic, inviscid, compressible shear flows, the equivalent of Squire's theorem is proved. It is shown that a shear free basic flow does not support subsonic modes. Further, it is shown that the instability region for subsonic disturbances is a semi-ellipse type region, which depends on the Mach number, wave number, and depth of the fluid layer. Under an approximation, two estimates for the growth rate of an unstable subsonic mode are obtained. For unbounded flows, a sufficient condition for stability to supersonic disturbances and an estimate for the growth rate of an unstable supersonic disturbance are given.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmaa.1999.6616</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2000-01, Vol.241 (1), p.56-72
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1006_jmaa_1999_6616
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematics
Partial differential equations
Physics
Sciences and techniques of general use
Thick shear flows
Turbulent flows, convection, and heat transfer
title Stability of Non-Homentropic, Inviscid, Compressible Shear Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Non-Homentropic,%20Inviscid,%20Compressible%20Shear%20Flows&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Padmini,%20M.&rft.date=2000-01-01&rft.volume=241&rft.issue=1&rft.spage=56&rft.epage=72&rft.pages=56-72&rft.issn=0022-247X&rft.eissn=1096-0813&rft.coden=JMANAK&rft_id=info:doi/10.1006/jmaa.1999.6616&rft_dat=%3Celsevier_cross%3ES0022247X99966167%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X99966167&rfr_iscdi=true