The Dirichlet Problem for the Semilinear Vibrating String Equation in a Class of Domains with Corner Points
This paper deals with existence, uniqueness, and regularity of solutions of the Dirichlet problem for the semilinear vibrating string equation in a class of bounded domains with corner points, Under some symmetry conditions on the boundary we reduce our problem to the corresponding problem in a rect...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 1995-02, Vol.189 (3), p.872-896 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 896 |
---|---|
container_issue | 3 |
container_start_page | 872 |
container_title | Journal of mathematical analysis and applications |
container_volume | 189 |
creator | Lyashenko, A.A. Smiley, M.W. |
description | This paper deals with existence, uniqueness, and regularity of solutions of the Dirichlet problem for the semilinear vibrating string equation in a class of bounded domains with corner points, Under some symmetry conditions on the boundary we reduce our problem to the corresponding problem in a rectangle. Using known results for rectangular domains, existence, uniqueness, and regularity of solutions are obtained. |
doi_str_mv | 10.1006/jmaa.1995.1055 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmaa_1995_1055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X85710554</els_id><sourcerecordid>S0022247X85710554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-9eaddbe7788fa91f503c1c61d85573747f0affa01622180595b934ea5647126e3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwMntgTbGTOE5GlJYPqRKVWhBbdHHO1CWxix1A_PckKmJjenq69-5OP0IuOZtxxrLrXQcw40UhBivEEZlwVmQRy3lyTCaMxXEUp_LllJyFsGOMcyH5hLxttkjnxhu1bbGnK-_qFjuqnaf9MFljZ1pjETx9NrWH3thXuu79KIv3j8E7S42lQMsWQqBO07nrwNhAv0y_paXzFj1dOWP7cE5ONLQBL351Sp5uF5vyPlo-3j2UN8tIJUL2UYHQNDVKmecaCq4FSxRXGW9yIWQiU6kZaA2MZ3HMcyYKURdJiiCyVPI4w2RKZoe9yrsQPOpq700H_rvirBpRVSOqakRVjaiGwtWhsIegoNUerDLhr5WITGYJH2L5IYbD858GfRWUQauwMR5VXzXO_HfhB5k7fNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Dirichlet Problem for the Semilinear Vibrating String Equation in a Class of Domains with Corner Points</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lyashenko, A.A. ; Smiley, M.W.</creator><creatorcontrib>Lyashenko, A.A. ; Smiley, M.W.</creatorcontrib><description>This paper deals with existence, uniqueness, and regularity of solutions of the Dirichlet problem for the semilinear vibrating string equation in a class of bounded domains with corner points, Under some symmetry conditions on the boundary we reduce our problem to the corresponding problem in a rectangle. Using known results for rectangular domains, existence, uniqueness, and regularity of solutions are obtained.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1006/jmaa.1995.1055</identifier><identifier>CODEN: JMANAK</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Classical and quantum physics: mechanics and fields ; Classical mechanics of continuous media: general mathematical aspects ; Exact sciences and technology ; Function theory, analysis ; Mathematical analysis ; Mathematical methods in physics ; Mathematics ; Partial differential equations ; Physics ; Sciences and techniques of general use ; Vibrations and mechanical waves ; Waves and wave propagation: general mathematical aspects</subject><ispartof>Journal of mathematical analysis and applications, 1995-02, Vol.189 (3), p.872-896</ispartof><rights>1995 Academic Press</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-9eaddbe7788fa91f503c1c61d85573747f0affa01622180595b934ea5647126e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022247X85710554$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3567631$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyashenko, A.A.</creatorcontrib><creatorcontrib>Smiley, M.W.</creatorcontrib><title>The Dirichlet Problem for the Semilinear Vibrating String Equation in a Class of Domains with Corner Points</title><title>Journal of mathematical analysis and applications</title><description>This paper deals with existence, uniqueness, and regularity of solutions of the Dirichlet problem for the semilinear vibrating string equation in a class of bounded domains with corner points, Under some symmetry conditions on the boundary we reduce our problem to the corresponding problem in a rectangle. Using known results for rectangular domains, existence, uniqueness, and regularity of solutions are obtained.</description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical mechanics of continuous media: general mathematical aspects</subject><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Vibrations and mechanical waves</subject><subject>Waves and wave propagation: general mathematical aspects</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwMntgTbGTOE5GlJYPqRKVWhBbdHHO1CWxix1A_PckKmJjenq69-5OP0IuOZtxxrLrXQcw40UhBivEEZlwVmQRy3lyTCaMxXEUp_LllJyFsGOMcyH5hLxttkjnxhu1bbGnK-_qFjuqnaf9MFljZ1pjETx9NrWH3thXuu79KIv3j8E7S42lQMsWQqBO07nrwNhAv0y_paXzFj1dOWP7cE5ONLQBL351Sp5uF5vyPlo-3j2UN8tIJUL2UYHQNDVKmecaCq4FSxRXGW9yIWQiU6kZaA2MZ3HMcyYKURdJiiCyVPI4w2RKZoe9yrsQPOpq700H_rvirBpRVSOqakRVjaiGwtWhsIegoNUerDLhr5WITGYJH2L5IYbD858GfRWUQauwMR5VXzXO_HfhB5k7fNg</recordid><startdate>19950201</startdate><enddate>19950201</enddate><creator>Lyashenko, A.A.</creator><creator>Smiley, M.W.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950201</creationdate><title>The Dirichlet Problem for the Semilinear Vibrating String Equation in a Class of Domains with Corner Points</title><author>Lyashenko, A.A. ; Smiley, M.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-9eaddbe7788fa91f503c1c61d85573747f0affa01622180595b934ea5647126e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical mechanics of continuous media: general mathematical aspects</topic><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Vibrations and mechanical waves</topic><topic>Waves and wave propagation: general mathematical aspects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyashenko, A.A.</creatorcontrib><creatorcontrib>Smiley, M.W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyashenko, A.A.</au><au>Smiley, M.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dirichlet Problem for the Semilinear Vibrating String Equation in a Class of Domains with Corner Points</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>1995-02-01</date><risdate>1995</risdate><volume>189</volume><issue>3</issue><spage>872</spage><epage>896</epage><pages>872-896</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><coden>JMANAK</coden><abstract>This paper deals with existence, uniqueness, and regularity of solutions of the Dirichlet problem for the semilinear vibrating string equation in a class of bounded domains with corner points, Under some symmetry conditions on the boundary we reduce our problem to the corresponding problem in a rectangle. Using known results for rectangular domains, existence, uniqueness, and regularity of solutions are obtained.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmaa.1995.1055</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 1995-02, Vol.189 (3), p.872-896 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jmaa_1995_1055 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Classical and quantum physics: mechanics and fields Classical mechanics of continuous media: general mathematical aspects Exact sciences and technology Function theory, analysis Mathematical analysis Mathematical methods in physics Mathematics Partial differential equations Physics Sciences and techniques of general use Vibrations and mechanical waves Waves and wave propagation: general mathematical aspects |
title | The Dirichlet Problem for the Semilinear Vibrating String Equation in a Class of Domains with Corner Points |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dirichlet%20Problem%20for%20the%20Semilinear%20Vibrating%20String%20Equation%20in%20a%20Class%20of%20Domains%20with%20Corner%20Points&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Lyashenko,%20A.A.&rft.date=1995-02-01&rft.volume=189&rft.issue=3&rft.spage=872&rft.epage=896&rft.pages=872-896&rft.issn=0022-247X&rft.eissn=1096-0813&rft.coden=JMANAK&rft_id=info:doi/10.1006/jmaa.1995.1055&rft_dat=%3Celsevier_cross%3ES0022247X85710554%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X85710554&rfr_iscdi=true |