The Dirichlet Problem for the Semilinear Vibrating String Equation in a Class of Domains with Corner Points

This paper deals with existence, uniqueness, and regularity of solutions of the Dirichlet problem for the semilinear vibrating string equation in a class of bounded domains with corner points, Under some symmetry conditions on the boundary we reduce our problem to the corresponding problem in a rect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 1995-02, Vol.189 (3), p.872-896
Hauptverfasser: Lyashenko, A.A., Smiley, M.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 896
container_issue 3
container_start_page 872
container_title Journal of mathematical analysis and applications
container_volume 189
creator Lyashenko, A.A.
Smiley, M.W.
description This paper deals with existence, uniqueness, and regularity of solutions of the Dirichlet problem for the semilinear vibrating string equation in a class of bounded domains with corner points, Under some symmetry conditions on the boundary we reduce our problem to the corresponding problem in a rectangle. Using known results for rectangular domains, existence, uniqueness, and regularity of solutions are obtained.
doi_str_mv 10.1006/jmaa.1995.1055
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmaa_1995_1055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X85710554</els_id><sourcerecordid>S0022247X85710554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-9eaddbe7788fa91f503c1c61d85573747f0affa01622180595b934ea5647126e3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwMntgTbGTOE5GlJYPqRKVWhBbdHHO1CWxix1A_PckKmJjenq69-5OP0IuOZtxxrLrXQcw40UhBivEEZlwVmQRy3lyTCaMxXEUp_LllJyFsGOMcyH5hLxttkjnxhu1bbGnK-_qFjuqnaf9MFljZ1pjETx9NrWH3thXuu79KIv3j8E7S42lQMsWQqBO07nrwNhAv0y_paXzFj1dOWP7cE5ONLQBL351Sp5uF5vyPlo-3j2UN8tIJUL2UYHQNDVKmecaCq4FSxRXGW9yIWQiU6kZaA2MZ3HMcyYKURdJiiCyVPI4w2RKZoe9yrsQPOpq700H_rvirBpRVSOqakRVjaiGwtWhsIegoNUerDLhr5WITGYJH2L5IYbD858GfRWUQauwMR5VXzXO_HfhB5k7fNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Dirichlet Problem for the Semilinear Vibrating String Equation in a Class of Domains with Corner Points</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lyashenko, A.A. ; Smiley, M.W.</creator><creatorcontrib>Lyashenko, A.A. ; Smiley, M.W.</creatorcontrib><description>This paper deals with existence, uniqueness, and regularity of solutions of the Dirichlet problem for the semilinear vibrating string equation in a class of bounded domains with corner points, Under some symmetry conditions on the boundary we reduce our problem to the corresponding problem in a rectangle. Using known results for rectangular domains, existence, uniqueness, and regularity of solutions are obtained.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1006/jmaa.1995.1055</identifier><identifier>CODEN: JMANAK</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Classical and quantum physics: mechanics and fields ; Classical mechanics of continuous media: general mathematical aspects ; Exact sciences and technology ; Function theory, analysis ; Mathematical analysis ; Mathematical methods in physics ; Mathematics ; Partial differential equations ; Physics ; Sciences and techniques of general use ; Vibrations and mechanical waves ; Waves and wave propagation: general mathematical aspects</subject><ispartof>Journal of mathematical analysis and applications, 1995-02, Vol.189 (3), p.872-896</ispartof><rights>1995 Academic Press</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-9eaddbe7788fa91f503c1c61d85573747f0affa01622180595b934ea5647126e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022247X85710554$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3567631$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyashenko, A.A.</creatorcontrib><creatorcontrib>Smiley, M.W.</creatorcontrib><title>The Dirichlet Problem for the Semilinear Vibrating String Equation in a Class of Domains with Corner Points</title><title>Journal of mathematical analysis and applications</title><description>This paper deals with existence, uniqueness, and regularity of solutions of the Dirichlet problem for the semilinear vibrating string equation in a class of bounded domains with corner points, Under some symmetry conditions on the boundary we reduce our problem to the corresponding problem in a rectangle. Using known results for rectangular domains, existence, uniqueness, and regularity of solutions are obtained.</description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical mechanics of continuous media: general mathematical aspects</subject><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Vibrations and mechanical waves</subject><subject>Waves and wave propagation: general mathematical aspects</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwMntgTbGTOE5GlJYPqRKVWhBbdHHO1CWxix1A_PckKmJjenq69-5OP0IuOZtxxrLrXQcw40UhBivEEZlwVmQRy3lyTCaMxXEUp_LllJyFsGOMcyH5hLxttkjnxhu1bbGnK-_qFjuqnaf9MFljZ1pjETx9NrWH3thXuu79KIv3j8E7S42lQMsWQqBO07nrwNhAv0y_paXzFj1dOWP7cE5ONLQBL351Sp5uF5vyPlo-3j2UN8tIJUL2UYHQNDVKmecaCq4FSxRXGW9yIWQiU6kZaA2MZ3HMcyYKURdJiiCyVPI4w2RKZoe9yrsQPOpq700H_rvirBpRVSOqakRVjaiGwtWhsIegoNUerDLhr5WITGYJH2L5IYbD858GfRWUQauwMR5VXzXO_HfhB5k7fNg</recordid><startdate>19950201</startdate><enddate>19950201</enddate><creator>Lyashenko, A.A.</creator><creator>Smiley, M.W.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950201</creationdate><title>The Dirichlet Problem for the Semilinear Vibrating String Equation in a Class of Domains with Corner Points</title><author>Lyashenko, A.A. ; Smiley, M.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-9eaddbe7788fa91f503c1c61d85573747f0affa01622180595b934ea5647126e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical mechanics of continuous media: general mathematical aspects</topic><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Vibrations and mechanical waves</topic><topic>Waves and wave propagation: general mathematical aspects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyashenko, A.A.</creatorcontrib><creatorcontrib>Smiley, M.W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyashenko, A.A.</au><au>Smiley, M.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dirichlet Problem for the Semilinear Vibrating String Equation in a Class of Domains with Corner Points</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>1995-02-01</date><risdate>1995</risdate><volume>189</volume><issue>3</issue><spage>872</spage><epage>896</epage><pages>872-896</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><coden>JMANAK</coden><abstract>This paper deals with existence, uniqueness, and regularity of solutions of the Dirichlet problem for the semilinear vibrating string equation in a class of bounded domains with corner points, Under some symmetry conditions on the boundary we reduce our problem to the corresponding problem in a rectangle. Using known results for rectangular domains, existence, uniqueness, and regularity of solutions are obtained.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmaa.1995.1055</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 1995-02, Vol.189 (3), p.872-896
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1006_jmaa_1995_1055
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Classical and quantum physics: mechanics and fields
Classical mechanics of continuous media: general mathematical aspects
Exact sciences and technology
Function theory, analysis
Mathematical analysis
Mathematical methods in physics
Mathematics
Partial differential equations
Physics
Sciences and techniques of general use
Vibrations and mechanical waves
Waves and wave propagation: general mathematical aspects
title The Dirichlet Problem for the Semilinear Vibrating String Equation in a Class of Domains with Corner Points
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dirichlet%20Problem%20for%20the%20Semilinear%20Vibrating%20String%20Equation%20in%20a%20Class%20of%20Domains%20with%20Corner%20Points&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Lyashenko,%20A.A.&rft.date=1995-02-01&rft.volume=189&rft.issue=3&rft.spage=872&rft.epage=896&rft.pages=872-896&rft.issn=0022-247X&rft.eissn=1096-0813&rft.coden=JMANAK&rft_id=info:doi/10.1006/jmaa.1995.1055&rft_dat=%3Celsevier_cross%3ES0022247X85710554%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X85710554&rfr_iscdi=true