External Tangents and Closedness of Cone + Subspace

When X and Y are convex subsets of a topological vector space E, an external tangent of the ordered pair ( X, Y) is defined as an open ray T that issues from a point of X ∩ Y, is disjoint from X ∪ Y, and is such that X intersects each open halfspace containing T. It is shown that if E is a separable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 1994-12, Vol.188 (2), p.441-457
Hauptverfasser: Gritzmann, P., Klee, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue 2
container_start_page 441
container_title Journal of mathematical analysis and applications
container_volume 188
creator Gritzmann, P.
Klee, V.
description When X and Y are convex subsets of a topological vector space E, an external tangent of the ordered pair ( X, Y) is defined as an open ray T that issues from a point of X ∩ Y, is disjoint from X ∪ Y, and is such that X intersects each open halfspace containing T. It is shown that if E is a separable normed space, C is a closed convex cone in E, and L is a line through the origin in E, then the vector sum C + L = { c + ℓ: c ∈ C, ℓ ∈ L} is closed if and only if the pair ( C, L) does not admit any external tangent. When S is a subspace of finite dimension greater than 1, closedness of C + S is shown to be equivalent to the nonexistence of external tangents of a certain pair ( C′, L,), where L is a line through the origin and C′ is a second closed convex cone constructed from ( C, S). Questions about the closedness of sets of the form cone + subspace arise from Various optimization problems, from problems concerning the extension of positive linear functions, and from certain problems in matrix theory.
doi_str_mv 10.1006/jmaa.1994.1438
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmaa_1994_1438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X84714387</els_id><sourcerecordid>S0022247X84714387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2278-790f31381723d02891e8a7ee5c9cc5481c9a6eb315768578d1dd3237b992afe63</originalsourceid><addsrcrecordid>eNp1jzFPwzAQhS0EEqWwMmdgQwk-O4ntEUWlIFVioEhs1tW-oFSpU9kFwb8nUREb0y3ve_c-xq6BF8B5fbfdIRZgTFlAKfUJmwE3dc41yFM241yIXJTq7ZxdpLTlHKBSMGNy8XWgGLDP1hjeKRxShsFnTT8k8oFSyoY2a4ZA2W328rFJe3R0yc5a7BNd_d45e31YrJvHfPW8fGruV7kTQulcGd5KkBqUkJ4LbYA0KqLKGeeqUoMzWNNGjkNqXSntwXsppNoYI7ClWs5Zcex1cUgpUmv3sdth_LbA7aRsJ2U7KdtJeQRujsAek8O-jRhcl_4oKRVoXY0xfYzROP6zo2iT6yg48l0kd7B-6P778APSqWfK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>External Tangents and Closedness of Cone + Subspace</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gritzmann, P. ; Klee, V.</creator><creatorcontrib>Gritzmann, P. ; Klee, V.</creatorcontrib><description>When X and Y are convex subsets of a topological vector space E, an external tangent of the ordered pair ( X, Y) is defined as an open ray T that issues from a point of X ∩ Y, is disjoint from X ∪ Y, and is such that X intersects each open halfspace containing T. It is shown that if E is a separable normed space, C is a closed convex cone in E, and L is a line through the origin in E, then the vector sum C + L = { c + ℓ: c ∈ C, ℓ ∈ L} is closed if and only if the pair ( C, L) does not admit any external tangent. When S is a subspace of finite dimension greater than 1, closedness of C + S is shown to be equivalent to the nonexistence of external tangents of a certain pair ( C′, L,), where L is a line through the origin and C′ is a second closed convex cone constructed from ( C, S). Questions about the closedness of sets of the form cone + subspace arise from Various optimization problems, from problems concerning the extension of positive linear functions, and from certain problems in matrix theory.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1006/jmaa.1994.1438</identifier><identifier>CODEN: JMANAK</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Convex and discrete geometry ; Exact sciences and technology ; General topology ; Geometry ; Mathematics ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Journal of mathematical analysis and applications, 1994-12, Vol.188 (2), p.441-457</ispartof><rights>1994 Academic Press</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022247X84714387$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3371885$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gritzmann, P.</creatorcontrib><creatorcontrib>Klee, V.</creatorcontrib><title>External Tangents and Closedness of Cone + Subspace</title><title>Journal of mathematical analysis and applications</title><description>When X and Y are convex subsets of a topological vector space E, an external tangent of the ordered pair ( X, Y) is defined as an open ray T that issues from a point of X ∩ Y, is disjoint from X ∪ Y, and is such that X intersects each open halfspace containing T. It is shown that if E is a separable normed space, C is a closed convex cone in E, and L is a line through the origin in E, then the vector sum C + L = { c + ℓ: c ∈ C, ℓ ∈ L} is closed if and only if the pair ( C, L) does not admit any external tangent. When S is a subspace of finite dimension greater than 1, closedness of C + S is shown to be equivalent to the nonexistence of external tangents of a certain pair ( C′, L,), where L is a line through the origin and C′ is a second closed convex cone constructed from ( C, S). Questions about the closedness of sets of the form cone + subspace arise from Various optimization problems, from problems concerning the extension of positive linear functions, and from certain problems in matrix theory.</description><subject>Convex and discrete geometry</subject><subject>Exact sciences and technology</subject><subject>General topology</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1jzFPwzAQhS0EEqWwMmdgQwk-O4ntEUWlIFVioEhs1tW-oFSpU9kFwb8nUREb0y3ve_c-xq6BF8B5fbfdIRZgTFlAKfUJmwE3dc41yFM241yIXJTq7ZxdpLTlHKBSMGNy8XWgGLDP1hjeKRxShsFnTT8k8oFSyoY2a4ZA2W328rFJe3R0yc5a7BNd_d45e31YrJvHfPW8fGruV7kTQulcGd5KkBqUkJ4LbYA0KqLKGeeqUoMzWNNGjkNqXSntwXsppNoYI7ClWs5Zcex1cUgpUmv3sdth_LbA7aRsJ2U7KdtJeQRujsAek8O-jRhcl_4oKRVoXY0xfYzROP6zo2iT6yg48l0kd7B-6P778APSqWfK</recordid><startdate>19941201</startdate><enddate>19941201</enddate><creator>Gritzmann, P.</creator><creator>Klee, V.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19941201</creationdate><title>External Tangents and Closedness of Cone + Subspace</title><author>Gritzmann, P. ; Klee, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2278-790f31381723d02891e8a7ee5c9cc5481c9a6eb315768578d1dd3237b992afe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Convex and discrete geometry</topic><topic>Exact sciences and technology</topic><topic>General topology</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gritzmann, P.</creatorcontrib><creatorcontrib>Klee, V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gritzmann, P.</au><au>Klee, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>External Tangents and Closedness of Cone + Subspace</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>1994-12-01</date><risdate>1994</risdate><volume>188</volume><issue>2</issue><spage>441</spage><epage>457</epage><pages>441-457</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><coden>JMANAK</coden><abstract>When X and Y are convex subsets of a topological vector space E, an external tangent of the ordered pair ( X, Y) is defined as an open ray T that issues from a point of X ∩ Y, is disjoint from X ∪ Y, and is such that X intersects each open halfspace containing T. It is shown that if E is a separable normed space, C is a closed convex cone in E, and L is a line through the origin in E, then the vector sum C + L = { c + ℓ: c ∈ C, ℓ ∈ L} is closed if and only if the pair ( C, L) does not admit any external tangent. When S is a subspace of finite dimension greater than 1, closedness of C + S is shown to be equivalent to the nonexistence of external tangents of a certain pair ( C′, L,), where L is a line through the origin and C′ is a second closed convex cone constructed from ( C, S). Questions about the closedness of sets of the form cone + subspace arise from Various optimization problems, from problems concerning the extension of positive linear functions, and from certain problems in matrix theory.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmaa.1994.1438</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 1994-12, Vol.188 (2), p.441-457
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1006_jmaa_1994_1438
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Convex and discrete geometry
Exact sciences and technology
General topology
Geometry
Mathematics
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title External Tangents and Closedness of Cone + Subspace
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=External%20Tangents%20and%20Closedness%20of%20Cone%20+%20Subspace&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Gritzmann,%20P.&rft.date=1994-12-01&rft.volume=188&rft.issue=2&rft.spage=441&rft.epage=457&rft.pages=441-457&rft.issn=0022-247X&rft.eissn=1096-0813&rft.coden=JMANAK&rft_id=info:doi/10.1006/jmaa.1994.1438&rft_dat=%3Celsevier_cross%3ES0022247X84714387%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X84714387&rfr_iscdi=true