Multiple Positive Solutions of Some Boundary Value Problems
We study the existence of multiple positive solutions of the equations − u′′=ƒ( t, u), subject to linear boundary conditions. We show that there are at least two positive solutions if ƒ( t, u) is superlinear at one end point (zero or infinity) and sublinear at the other. Applications of these result...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 1994-06, Vol.184 (3), p.640-648 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 648 |
---|---|
container_issue | 3 |
container_start_page | 640 |
container_title | Journal of mathematical analysis and applications |
container_volume | 184 |
creator | Erbe, L.H. Hu, S.C. Wang, H.Y. |
description | We study the existence of multiple positive solutions of the equations −
u′′=ƒ(
t,
u), subject to linear boundary conditions. We show that there are at least two positive solutions if ƒ(
t,
u) is superlinear at one end point (zero or infinity) and sublinear at the other. Applications of these results are provided to yield multiple positive solutions of some elliptic boundary value problems on an annulus. |
doi_str_mv | 10.1006/jmaa.1994.1227 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmaa_1994_1227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X84712273</els_id><sourcerecordid>S0022247X84712273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-46f3d23fcf28063f6f2ec5e2212cd34af48124b51693c051f543121c15366bd63</originalsourceid><addsrcrecordid>eNp1j01LxDAURYMoWEe3rvsHWvNe0kyLKx10FEYU_MBd6KQvkKFthqQd8N_bMm5dXR7c87iHsWvgOXCubnZdXedQVTIHxOUJS4BXKuMliFOWcI6YoVx-n7OLGHecAxRLSNjty9gObt9S-uajG9yB0nffjoPzfUy9nY6O0ns_9k0dftKvuh2nZvDblrp4yc5s3Ua6-ssF-3x8-Fg9ZZvX9fPqbpMZgeWQSWVFg8IaiyVXwiqLZApCBDSNkLWVJaDcFqAqYXgBtpACEAwUQqlto8SC5ce_JvgYA1m9D66b9mjgelbXs7qe1fWsPgHlEaBp1cFR0NE46g01LpAZdOPdf-gva4VfHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiple Positive Solutions of Some Boundary Value Problems</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Erbe, L.H. ; Hu, S.C. ; Wang, H.Y.</creator><creatorcontrib>Erbe, L.H. ; Hu, S.C. ; Wang, H.Y.</creatorcontrib><description>We study the existence of multiple positive solutions of the equations −
u′′=ƒ(
t,
u), subject to linear boundary conditions. We show that there are at least two positive solutions if ƒ(
t,
u) is superlinear at one end point (zero or infinity) and sublinear at the other. Applications of these results are provided to yield multiple positive solutions of some elliptic boundary value problems on an annulus.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1006/jmaa.1994.1227</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of mathematical analysis and applications, 1994-06, Vol.184 (3), p.640-648</ispartof><rights>1994 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-46f3d23fcf28063f6f2ec5e2212cd34af48124b51693c051f543121c15366bd63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022247X84712273$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Erbe, L.H.</creatorcontrib><creatorcontrib>Hu, S.C.</creatorcontrib><creatorcontrib>Wang, H.Y.</creatorcontrib><title>Multiple Positive Solutions of Some Boundary Value Problems</title><title>Journal of mathematical analysis and applications</title><description>We study the existence of multiple positive solutions of the equations −
u′′=ƒ(
t,
u), subject to linear boundary conditions. We show that there are at least two positive solutions if ƒ(
t,
u) is superlinear at one end point (zero or infinity) and sublinear at the other. Applications of these results are provided to yield multiple positive solutions of some elliptic boundary value problems on an annulus.</description><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAURYMoWEe3rvsHWvNe0kyLKx10FEYU_MBd6KQvkKFthqQd8N_bMm5dXR7c87iHsWvgOXCubnZdXedQVTIHxOUJS4BXKuMliFOWcI6YoVx-n7OLGHecAxRLSNjty9gObt9S-uajG9yB0nffjoPzfUy9nY6O0ns_9k0dftKvuh2nZvDblrp4yc5s3Ua6-ssF-3x8-Fg9ZZvX9fPqbpMZgeWQSWVFg8IaiyVXwiqLZApCBDSNkLWVJaDcFqAqYXgBtpACEAwUQqlto8SC5ce_JvgYA1m9D66b9mjgelbXs7qe1fWsPgHlEaBp1cFR0NE46g01LpAZdOPdf-gva4VfHw</recordid><startdate>19940615</startdate><enddate>19940615</enddate><creator>Erbe, L.H.</creator><creator>Hu, S.C.</creator><creator>Wang, H.Y.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940615</creationdate><title>Multiple Positive Solutions of Some Boundary Value Problems</title><author>Erbe, L.H. ; Hu, S.C. ; Wang, H.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-46f3d23fcf28063f6f2ec5e2212cd34af48124b51693c051f543121c15366bd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erbe, L.H.</creatorcontrib><creatorcontrib>Hu, S.C.</creatorcontrib><creatorcontrib>Wang, H.Y.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erbe, L.H.</au><au>Hu, S.C.</au><au>Wang, H.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Positive Solutions of Some Boundary Value Problems</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>1994-06-15</date><risdate>1994</risdate><volume>184</volume><issue>3</issue><spage>640</spage><epage>648</epage><pages>640-648</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>We study the existence of multiple positive solutions of the equations −
u′′=ƒ(
t,
u), subject to linear boundary conditions. We show that there are at least two positive solutions if ƒ(
t,
u) is superlinear at one end point (zero or infinity) and sublinear at the other. Applications of these results are provided to yield multiple positive solutions of some elliptic boundary value problems on an annulus.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jmaa.1994.1227</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 1994-06, Vol.184 (3), p.640-648 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jmaa_1994_1227 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
title | Multiple Positive Solutions of Some Boundary Value Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Positive%20Solutions%20of%20Some%20Boundary%20Value%20Problems&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Erbe,%20L.H.&rft.date=1994-06-15&rft.volume=184&rft.issue=3&rft.spage=640&rft.epage=648&rft.pages=640-648&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1006/jmaa.1994.1227&rft_dat=%3Celsevier_cross%3ES0022247X84712273%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X84712273&rfr_iscdi=true |