Multiple Positive Solutions of Some Boundary Value Problems

We study the existence of multiple positive solutions of the equations − u′′=ƒ( t, u), subject to linear boundary conditions. We show that there are at least two positive solutions if ƒ( t, u) is superlinear at one end point (zero or infinity) and sublinear at the other. Applications of these result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 1994-06, Vol.184 (3), p.640-648
Hauptverfasser: Erbe, L.H., Hu, S.C., Wang, H.Y.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 648
container_issue 3
container_start_page 640
container_title Journal of mathematical analysis and applications
container_volume 184
creator Erbe, L.H.
Hu, S.C.
Wang, H.Y.
description We study the existence of multiple positive solutions of the equations − u′′=ƒ( t, u), subject to linear boundary conditions. We show that there are at least two positive solutions if ƒ( t, u) is superlinear at one end point (zero or infinity) and sublinear at the other. Applications of these results are provided to yield multiple positive solutions of some elliptic boundary value problems on an annulus.
doi_str_mv 10.1006/jmaa.1994.1227
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmaa_1994_1227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X84712273</els_id><sourcerecordid>S0022247X84712273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-46f3d23fcf28063f6f2ec5e2212cd34af48124b51693c051f543121c15366bd63</originalsourceid><addsrcrecordid>eNp1j01LxDAURYMoWEe3rvsHWvNe0kyLKx10FEYU_MBd6KQvkKFthqQd8N_bMm5dXR7c87iHsWvgOXCubnZdXedQVTIHxOUJS4BXKuMliFOWcI6YoVx-n7OLGHecAxRLSNjty9gObt9S-uajG9yB0nffjoPzfUy9nY6O0ns_9k0dftKvuh2nZvDblrp4yc5s3Ua6-ssF-3x8-Fg9ZZvX9fPqbpMZgeWQSWVFg8IaiyVXwiqLZApCBDSNkLWVJaDcFqAqYXgBtpACEAwUQqlto8SC5ce_JvgYA1m9D66b9mjgelbXs7qe1fWsPgHlEaBp1cFR0NE46g01LpAZdOPdf-gva4VfHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiple Positive Solutions of Some Boundary Value Problems</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Erbe, L.H. ; Hu, S.C. ; Wang, H.Y.</creator><creatorcontrib>Erbe, L.H. ; Hu, S.C. ; Wang, H.Y.</creatorcontrib><description>We study the existence of multiple positive solutions of the equations − u′′=ƒ( t, u), subject to linear boundary conditions. We show that there are at least two positive solutions if ƒ( t, u) is superlinear at one end point (zero or infinity) and sublinear at the other. Applications of these results are provided to yield multiple positive solutions of some elliptic boundary value problems on an annulus.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1006/jmaa.1994.1227</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of mathematical analysis and applications, 1994-06, Vol.184 (3), p.640-648</ispartof><rights>1994 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-46f3d23fcf28063f6f2ec5e2212cd34af48124b51693c051f543121c15366bd63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022247X84712273$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Erbe, L.H.</creatorcontrib><creatorcontrib>Hu, S.C.</creatorcontrib><creatorcontrib>Wang, H.Y.</creatorcontrib><title>Multiple Positive Solutions of Some Boundary Value Problems</title><title>Journal of mathematical analysis and applications</title><description>We study the existence of multiple positive solutions of the equations − u′′=ƒ( t, u), subject to linear boundary conditions. We show that there are at least two positive solutions if ƒ( t, u) is superlinear at one end point (zero or infinity) and sublinear at the other. Applications of these results are provided to yield multiple positive solutions of some elliptic boundary value problems on an annulus.</description><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAURYMoWEe3rvsHWvNe0kyLKx10FEYU_MBd6KQvkKFthqQd8N_bMm5dXR7c87iHsWvgOXCubnZdXedQVTIHxOUJS4BXKuMliFOWcI6YoVx-n7OLGHecAxRLSNjty9gObt9S-uajG9yB0nffjoPzfUy9nY6O0ns_9k0dftKvuh2nZvDblrp4yc5s3Ua6-ssF-3x8-Fg9ZZvX9fPqbpMZgeWQSWVFg8IaiyVXwiqLZApCBDSNkLWVJaDcFqAqYXgBtpACEAwUQqlto8SC5ce_JvgYA1m9D66b9mjgelbXs7qe1fWsPgHlEaBp1cFR0NE46g01LpAZdOPdf-gva4VfHw</recordid><startdate>19940615</startdate><enddate>19940615</enddate><creator>Erbe, L.H.</creator><creator>Hu, S.C.</creator><creator>Wang, H.Y.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940615</creationdate><title>Multiple Positive Solutions of Some Boundary Value Problems</title><author>Erbe, L.H. ; Hu, S.C. ; Wang, H.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-46f3d23fcf28063f6f2ec5e2212cd34af48124b51693c051f543121c15366bd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erbe, L.H.</creatorcontrib><creatorcontrib>Hu, S.C.</creatorcontrib><creatorcontrib>Wang, H.Y.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erbe, L.H.</au><au>Hu, S.C.</au><au>Wang, H.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Positive Solutions of Some Boundary Value Problems</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>1994-06-15</date><risdate>1994</risdate><volume>184</volume><issue>3</issue><spage>640</spage><epage>648</epage><pages>640-648</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>We study the existence of multiple positive solutions of the equations − u′′=ƒ( t, u), subject to linear boundary conditions. We show that there are at least two positive solutions if ƒ( t, u) is superlinear at one end point (zero or infinity) and sublinear at the other. Applications of these results are provided to yield multiple positive solutions of some elliptic boundary value problems on an annulus.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jmaa.1994.1227</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 1994-06, Vol.184 (3), p.640-648
issn 0022-247X
1096-0813
language eng
recordid cdi_crossref_primary_10_1006_jmaa_1994_1227
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
title Multiple Positive Solutions of Some Boundary Value Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Positive%20Solutions%20of%20Some%20Boundary%20Value%20Problems&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Erbe,%20L.H.&rft.date=1994-06-15&rft.volume=184&rft.issue=3&rft.spage=640&rft.epage=648&rft.pages=640-648&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1006/jmaa.1994.1227&rft_dat=%3Celsevier_cross%3ES0022247X84712273%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X84712273&rfr_iscdi=true