Markovian Cocycles on Operator Algebras Adapted to a Fock Filtration

The introduction of a Feller-type condition allows the study of Markovian, cocycles adapted to a Fock filtration to be extended from von Neumann algebras to C*-algebras. It is shown that every such cocycle which, along with its adjoint cocycle, is pointwise strongly continuous and whose associated s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2000-12, Vol.178 (2), p.269-305
Hauptverfasser: Lindsay, J.Martin, Wills, Stephen J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue 2
container_start_page 269
container_title Journal of functional analysis
container_volume 178
creator Lindsay, J.Martin
Wills, Stephen J.
description The introduction of a Feller-type condition allows the study of Markovian, cocycles adapted to a Fock filtration to be extended from von Neumann algebras to C*-algebras. It is shown that every such cocycle which, along with its adjoint cocycle, is pointwise strongly continuous and whose associated semigroups are norm continuous, weakly satisfies a quantum stochastic differential equation (QSDE). The matrix of coefficients of this equation may thereby be considered as the generator of the cocycle. The QSDE is satisfied strongly in any of the following cases: when the cocycle is completely positive and contractive, or the driving quantum noise is finite dimensional, or the C*-algebra is finite dimensional and the cocycle generator is bounded. Applying the algebra results to Fock-adapted Markovian cocycles on a Hilbert space we obtain similar characterisations. In particular a contraction cocycle whose Markov semigroup is norm continuous strongly satisfies a QSDE. A representation of cocycles in terms of a family of associated semigroups is central to the present analysis, providing the connection with QSDEs through a parallel work (2000, J. M. Lindsay and S. J. Wills, Probab. Theory Related Fields116, 505–543).
doi_str_mv 10.1006/jfan.2000.3658
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jfan_2000_3658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123600936589</els_id><sourcerecordid>S0022123600936589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f79ca19eaeda807f36e86989f1e41f7586c086da49cb711209cbbd4b8d6a690a3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwMvsPJDznw7HHqlBAKuoCs_VivyC3Ia7sqFL_PYnKynSXe66uDmOPAnIBIJ_2HQ55AQB5KWt1xRYCtMygUeU1WwAURSaKUt6yu5T2AELIql6w5w-Mh3DyOPB1sGfbU-Jh4LsjRRxD5Kv-m9qIia8cHkdyfAwc-SbYA9_4fpxKPgz37KbDPtHDXy7Z1-blc_2WbXev7-vVNrNlIcesa7RFoQnJoYKmKyUpqZXuBFWia2olLSjpsNK2bYQoYMrWVa1yEqUGLJcsv-zaGFKK1Jlj9D8Yz0aAmR2Y2YGZHZjZwQSoC0DTq5OnaJL1NFhyPpIdjQv-P_QXTRxi5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Markovian Cocycles on Operator Algebras Adapted to a Fock Filtration</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lindsay, J.Martin ; Wills, Stephen J.</creator><creatorcontrib>Lindsay, J.Martin ; Wills, Stephen J.</creatorcontrib><description>The introduction of a Feller-type condition allows the study of Markovian, cocycles adapted to a Fock filtration to be extended from von Neumann algebras to C*-algebras. It is shown that every such cocycle which, along with its adjoint cocycle, is pointwise strongly continuous and whose associated semigroups are norm continuous, weakly satisfies a quantum stochastic differential equation (QSDE). The matrix of coefficients of this equation may thereby be considered as the generator of the cocycle. The QSDE is satisfied strongly in any of the following cases: when the cocycle is completely positive and contractive, or the driving quantum noise is finite dimensional, or the C*-algebra is finite dimensional and the cocycle generator is bounded. Applying the algebra results to Fock-adapted Markovian cocycles on a Hilbert space we obtain similar characterisations. In particular a contraction cocycle whose Markov semigroup is norm continuous strongly satisfies a QSDE. A representation of cocycles in terms of a family of associated semigroups is central to the present analysis, providing the connection with QSDEs through a parallel work (2000, J. M. Lindsay and S. J. Wills, Probab. Theory Related Fields116, 505–543).</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1006/jfan.2000.3658</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>completely bounded ; completely positive ; Feller property ; Markovian cocycle ; quantum Markov semigroup ; quantum stochastic ; stochastic flow</subject><ispartof>Journal of functional analysis, 2000-12, Vol.178 (2), p.269-305</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-f79ca19eaeda807f36e86989f1e41f7586c086da49cb711209cbbd4b8d6a690a3</citedby><cites>FETCH-LOGICAL-c326t-f79ca19eaeda807f36e86989f1e41f7586c086da49cb711209cbbd4b8d6a690a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jfan.2000.3658$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lindsay, J.Martin</creatorcontrib><creatorcontrib>Wills, Stephen J.</creatorcontrib><title>Markovian Cocycles on Operator Algebras Adapted to a Fock Filtration</title><title>Journal of functional analysis</title><description>The introduction of a Feller-type condition allows the study of Markovian, cocycles adapted to a Fock filtration to be extended from von Neumann algebras to C*-algebras. It is shown that every such cocycle which, along with its adjoint cocycle, is pointwise strongly continuous and whose associated semigroups are norm continuous, weakly satisfies a quantum stochastic differential equation (QSDE). The matrix of coefficients of this equation may thereby be considered as the generator of the cocycle. The QSDE is satisfied strongly in any of the following cases: when the cocycle is completely positive and contractive, or the driving quantum noise is finite dimensional, or the C*-algebra is finite dimensional and the cocycle generator is bounded. Applying the algebra results to Fock-adapted Markovian cocycles on a Hilbert space we obtain similar characterisations. In particular a contraction cocycle whose Markov semigroup is norm continuous strongly satisfies a QSDE. A representation of cocycles in terms of a family of associated semigroups is central to the present analysis, providing the connection with QSDEs through a parallel work (2000, J. M. Lindsay and S. J. Wills, Probab. Theory Related Fields116, 505–543).</description><subject>completely bounded</subject><subject>completely positive</subject><subject>Feller property</subject><subject>Markovian cocycle</subject><subject>quantum Markov semigroup</subject><subject>quantum stochastic</subject><subject>stochastic flow</subject><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwMvsPJDznw7HHqlBAKuoCs_VivyC3Ia7sqFL_PYnKynSXe66uDmOPAnIBIJ_2HQ55AQB5KWt1xRYCtMygUeU1WwAURSaKUt6yu5T2AELIql6w5w-Mh3DyOPB1sGfbU-Jh4LsjRRxD5Kv-m9qIia8cHkdyfAwc-SbYA9_4fpxKPgz37KbDPtHDXy7Z1-blc_2WbXev7-vVNrNlIcesa7RFoQnJoYKmKyUpqZXuBFWia2olLSjpsNK2bYQoYMrWVa1yEqUGLJcsv-zaGFKK1Jlj9D8Yz0aAmR2Y2YGZHZjZwQSoC0DTq5OnaJL1NFhyPpIdjQv-P_QXTRxi5g</recordid><startdate>20001220</startdate><enddate>20001220</enddate><creator>Lindsay, J.Martin</creator><creator>Wills, Stephen J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001220</creationdate><title>Markovian Cocycles on Operator Algebras Adapted to a Fock Filtration</title><author>Lindsay, J.Martin ; Wills, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f79ca19eaeda807f36e86989f1e41f7586c086da49cb711209cbbd4b8d6a690a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>completely bounded</topic><topic>completely positive</topic><topic>Feller property</topic><topic>Markovian cocycle</topic><topic>quantum Markov semigroup</topic><topic>quantum stochastic</topic><topic>stochastic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindsay, J.Martin</creatorcontrib><creatorcontrib>Wills, Stephen J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindsay, J.Martin</au><au>Wills, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Markovian Cocycles on Operator Algebras Adapted to a Fock Filtration</atitle><jtitle>Journal of functional analysis</jtitle><date>2000-12-20</date><risdate>2000</risdate><volume>178</volume><issue>2</issue><spage>269</spage><epage>305</epage><pages>269-305</pages><issn>0022-1236</issn><eissn>1096-0783</eissn><abstract>The introduction of a Feller-type condition allows the study of Markovian, cocycles adapted to a Fock filtration to be extended from von Neumann algebras to C*-algebras. It is shown that every such cocycle which, along with its adjoint cocycle, is pointwise strongly continuous and whose associated semigroups are norm continuous, weakly satisfies a quantum stochastic differential equation (QSDE). The matrix of coefficients of this equation may thereby be considered as the generator of the cocycle. The QSDE is satisfied strongly in any of the following cases: when the cocycle is completely positive and contractive, or the driving quantum noise is finite dimensional, or the C*-algebra is finite dimensional and the cocycle generator is bounded. Applying the algebra results to Fock-adapted Markovian cocycles on a Hilbert space we obtain similar characterisations. In particular a contraction cocycle whose Markov semigroup is norm continuous strongly satisfies a QSDE. A representation of cocycles in terms of a family of associated semigroups is central to the present analysis, providing the connection with QSDEs through a parallel work (2000, J. M. Lindsay and S. J. Wills, Probab. Theory Related Fields116, 505–543).</abstract><pub>Elsevier Inc</pub><doi>10.1006/jfan.2000.3658</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1236
ispartof Journal of functional analysis, 2000-12, Vol.178 (2), p.269-305
issn 0022-1236
1096-0783
language eng
recordid cdi_crossref_primary_10_1006_jfan_2000_3658
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects completely bounded
completely positive
Feller property
Markovian cocycle
quantum Markov semigroup
quantum stochastic
stochastic flow
title Markovian Cocycles on Operator Algebras Adapted to a Fock Filtration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Markovian%20Cocycles%20on%20Operator%20Algebras%20Adapted%20to%20a%20Fock%20Filtration&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Lindsay,%20J.Martin&rft.date=2000-12-20&rft.volume=178&rft.issue=2&rft.spage=269&rft.epage=305&rft.pages=269-305&rft.issn=0022-1236&rft.eissn=1096-0783&rft_id=info:doi/10.1006/jfan.2000.3658&rft_dat=%3Celsevier_cross%3ES0022123600936589%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022123600936589&rfr_iscdi=true