Markovian Cocycles on Operator Algebras Adapted to a Fock Filtration
The introduction of a Feller-type condition allows the study of Markovian, cocycles adapted to a Fock filtration to be extended from von Neumann algebras to C*-algebras. It is shown that every such cocycle which, along with its adjoint cocycle, is pointwise strongly continuous and whose associated s...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2000-12, Vol.178 (2), p.269-305 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 305 |
---|---|
container_issue | 2 |
container_start_page | 269 |
container_title | Journal of functional analysis |
container_volume | 178 |
creator | Lindsay, J.Martin Wills, Stephen J. |
description | The introduction of a Feller-type condition allows the study of Markovian, cocycles adapted to a Fock filtration to be extended from von Neumann algebras to C*-algebras. It is shown that every such cocycle which, along with its adjoint cocycle, is pointwise strongly continuous and whose associated semigroups are norm continuous, weakly satisfies a quantum stochastic differential equation (QSDE). The matrix of coefficients of this equation may thereby be considered as the generator of the cocycle. The QSDE is satisfied strongly in any of the following cases: when the cocycle is completely positive and contractive, or the driving quantum noise is finite dimensional, or the C*-algebra is finite dimensional and the cocycle generator is bounded. Applying the algebra results to Fock-adapted Markovian cocycles on a Hilbert space we obtain similar characterisations. In particular a contraction cocycle whose Markov semigroup is norm continuous strongly satisfies a QSDE. A representation of cocycles in terms of a family of associated semigroups is central to the present analysis, providing the connection with QSDEs through a parallel work (2000, J. M. Lindsay and S. J. Wills, Probab. Theory Related Fields116, 505–543). |
doi_str_mv | 10.1006/jfan.2000.3658 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jfan_2000_3658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123600936589</els_id><sourcerecordid>S0022123600936589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f79ca19eaeda807f36e86989f1e41f7586c086da49cb711209cbbd4b8d6a690a3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwMvsPJDznw7HHqlBAKuoCs_VivyC3Ia7sqFL_PYnKynSXe66uDmOPAnIBIJ_2HQ55AQB5KWt1xRYCtMygUeU1WwAURSaKUt6yu5T2AELIql6w5w-Mh3DyOPB1sGfbU-Jh4LsjRRxD5Kv-m9qIia8cHkdyfAwc-SbYA9_4fpxKPgz37KbDPtHDXy7Z1-blc_2WbXev7-vVNrNlIcesa7RFoQnJoYKmKyUpqZXuBFWia2olLSjpsNK2bYQoYMrWVa1yEqUGLJcsv-zaGFKK1Jlj9D8Yz0aAmR2Y2YGZHZjZwQSoC0DTq5OnaJL1NFhyPpIdjQv-P_QXTRxi5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Markovian Cocycles on Operator Algebras Adapted to a Fock Filtration</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lindsay, J.Martin ; Wills, Stephen J.</creator><creatorcontrib>Lindsay, J.Martin ; Wills, Stephen J.</creatorcontrib><description>The introduction of a Feller-type condition allows the study of Markovian, cocycles adapted to a Fock filtration to be extended from von Neumann algebras to C*-algebras. It is shown that every such cocycle which, along with its adjoint cocycle, is pointwise strongly continuous and whose associated semigroups are norm continuous, weakly satisfies a quantum stochastic differential equation (QSDE). The matrix of coefficients of this equation may thereby be considered as the generator of the cocycle. The QSDE is satisfied strongly in any of the following cases: when the cocycle is completely positive and contractive, or the driving quantum noise is finite dimensional, or the C*-algebra is finite dimensional and the cocycle generator is bounded. Applying the algebra results to Fock-adapted Markovian cocycles on a Hilbert space we obtain similar characterisations. In particular a contraction cocycle whose Markov semigroup is norm continuous strongly satisfies a QSDE. A representation of cocycles in terms of a family of associated semigroups is central to the present analysis, providing the connection with QSDEs through a parallel work (2000, J. M. Lindsay and S. J. Wills, Probab. Theory Related Fields116, 505–543).</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1006/jfan.2000.3658</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>completely bounded ; completely positive ; Feller property ; Markovian cocycle ; quantum Markov semigroup ; quantum stochastic ; stochastic flow</subject><ispartof>Journal of functional analysis, 2000-12, Vol.178 (2), p.269-305</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-f79ca19eaeda807f36e86989f1e41f7586c086da49cb711209cbbd4b8d6a690a3</citedby><cites>FETCH-LOGICAL-c326t-f79ca19eaeda807f36e86989f1e41f7586c086da49cb711209cbbd4b8d6a690a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jfan.2000.3658$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lindsay, J.Martin</creatorcontrib><creatorcontrib>Wills, Stephen J.</creatorcontrib><title>Markovian Cocycles on Operator Algebras Adapted to a Fock Filtration</title><title>Journal of functional analysis</title><description>The introduction of a Feller-type condition allows the study of Markovian, cocycles adapted to a Fock filtration to be extended from von Neumann algebras to C*-algebras. It is shown that every such cocycle which, along with its adjoint cocycle, is pointwise strongly continuous and whose associated semigroups are norm continuous, weakly satisfies a quantum stochastic differential equation (QSDE). The matrix of coefficients of this equation may thereby be considered as the generator of the cocycle. The QSDE is satisfied strongly in any of the following cases: when the cocycle is completely positive and contractive, or the driving quantum noise is finite dimensional, or the C*-algebra is finite dimensional and the cocycle generator is bounded. Applying the algebra results to Fock-adapted Markovian cocycles on a Hilbert space we obtain similar characterisations. In particular a contraction cocycle whose Markov semigroup is norm continuous strongly satisfies a QSDE. A representation of cocycles in terms of a family of associated semigroups is central to the present analysis, providing the connection with QSDEs through a parallel work (2000, J. M. Lindsay and S. J. Wills, Probab. Theory Related Fields116, 505–543).</description><subject>completely bounded</subject><subject>completely positive</subject><subject>Feller property</subject><subject>Markovian cocycle</subject><subject>quantum Markov semigroup</subject><subject>quantum stochastic</subject><subject>stochastic flow</subject><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwMvsPJDznw7HHqlBAKuoCs_VivyC3Ia7sqFL_PYnKynSXe66uDmOPAnIBIJ_2HQ55AQB5KWt1xRYCtMygUeU1WwAURSaKUt6yu5T2AELIql6w5w-Mh3DyOPB1sGfbU-Jh4LsjRRxD5Kv-m9qIia8cHkdyfAwc-SbYA9_4fpxKPgz37KbDPtHDXy7Z1-blc_2WbXev7-vVNrNlIcesa7RFoQnJoYKmKyUpqZXuBFWia2olLSjpsNK2bYQoYMrWVa1yEqUGLJcsv-zaGFKK1Jlj9D8Yz0aAmR2Y2YGZHZjZwQSoC0DTq5OnaJL1NFhyPpIdjQv-P_QXTRxi5g</recordid><startdate>20001220</startdate><enddate>20001220</enddate><creator>Lindsay, J.Martin</creator><creator>Wills, Stephen J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001220</creationdate><title>Markovian Cocycles on Operator Algebras Adapted to a Fock Filtration</title><author>Lindsay, J.Martin ; Wills, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f79ca19eaeda807f36e86989f1e41f7586c086da49cb711209cbbd4b8d6a690a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>completely bounded</topic><topic>completely positive</topic><topic>Feller property</topic><topic>Markovian cocycle</topic><topic>quantum Markov semigroup</topic><topic>quantum stochastic</topic><topic>stochastic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindsay, J.Martin</creatorcontrib><creatorcontrib>Wills, Stephen J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindsay, J.Martin</au><au>Wills, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Markovian Cocycles on Operator Algebras Adapted to a Fock Filtration</atitle><jtitle>Journal of functional analysis</jtitle><date>2000-12-20</date><risdate>2000</risdate><volume>178</volume><issue>2</issue><spage>269</spage><epage>305</epage><pages>269-305</pages><issn>0022-1236</issn><eissn>1096-0783</eissn><abstract>The introduction of a Feller-type condition allows the study of Markovian, cocycles adapted to a Fock filtration to be extended from von Neumann algebras to C*-algebras. It is shown that every such cocycle which, along with its adjoint cocycle, is pointwise strongly continuous and whose associated semigroups are norm continuous, weakly satisfies a quantum stochastic differential equation (QSDE). The matrix of coefficients of this equation may thereby be considered as the generator of the cocycle. The QSDE is satisfied strongly in any of the following cases: when the cocycle is completely positive and contractive, or the driving quantum noise is finite dimensional, or the C*-algebra is finite dimensional and the cocycle generator is bounded. Applying the algebra results to Fock-adapted Markovian cocycles on a Hilbert space we obtain similar characterisations. In particular a contraction cocycle whose Markov semigroup is norm continuous strongly satisfies a QSDE. A representation of cocycles in terms of a family of associated semigroups is central to the present analysis, providing the connection with QSDEs through a parallel work (2000, J. M. Lindsay and S. J. Wills, Probab. Theory Related Fields116, 505–543).</abstract><pub>Elsevier Inc</pub><doi>10.1006/jfan.2000.3658</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1236 |
ispartof | Journal of functional analysis, 2000-12, Vol.178 (2), p.269-305 |
issn | 0022-1236 1096-0783 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jfan_2000_3658 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | completely bounded completely positive Feller property Markovian cocycle quantum Markov semigroup quantum stochastic stochastic flow |
title | Markovian Cocycles on Operator Algebras Adapted to a Fock Filtration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Markovian%20Cocycles%20on%20Operator%20Algebras%20Adapted%20to%20a%20Fock%20Filtration&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Lindsay,%20J.Martin&rft.date=2000-12-20&rft.volume=178&rft.issue=2&rft.spage=269&rft.epage=305&rft.pages=269-305&rft.issn=0022-1236&rft.eissn=1096-0783&rft_id=info:doi/10.1006/jfan.2000.3658&rft_dat=%3Celsevier_cross%3ES0022123600936589%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022123600936589&rfr_iscdi=true |