Malliavin Calculus and Euclidean Quantum Mechanics II. Variational Principle for Infinite Dimensional Processes

A class of time reversible non-stationary diffusion processes with values on the classical Wiener space is constructed. These processes should be relevant to ("2-dimensional") Euclidean quantum field theory since they generalize those constructed before for non-relativistic quantum mechani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 1995-06, Vol.130 (2), p.450-476
Hauptverfasser: Cruzeiro, A.B., Zambrini, J.C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 476
container_issue 2
container_start_page 450
container_title Journal of functional analysis
container_volume 130
creator Cruzeiro, A.B.
Zambrini, J.C.
description A class of time reversible non-stationary diffusion processes with values on the classical Wiener space is constructed. These processes should be relevant to ("2-dimensional") Euclidean quantum field theory since they generalize those constructed before for non-relativistic quantum mechanics, along the lines of a strategy suggested by Schrödinger. Those processes are shown to be characterized by a stochastic variational principle and provide a probabilistic representation of the solutions of some infinite-dimensional heat equation. The Feynman-Kac formula on the Wiener space needed for this construction is also proved.
doi_str_mv 10.1006/jfan.1995.1077
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jfan_1995_1077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123685710774</els_id><sourcerecordid>S0022123685710774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2417-ae2a89d9b7ba42f95a0bccf0b824b819651ad1948b00221d58071f44bf183a6a3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK5ePecPtCb9TI6yrlrYRQX1GqZpgrNk0yVpF_z3tqwePQ0D8wzv-xByy1nKGavudhZ8yqUsp7Wuz8iCM1klrBb5OVkwlmUJz_LqklzFuGOM86ooF6TfgnMIR_R0BU6PbowUfEfXo3bYGfD0bQQ_jHu6NfoLPOpImyalnxAQBuw9OPoa0Gs8OENtH2jjLXocDH3AvfHx76TXJkYTr8mFBRfNze9cko_H9fvqOdm8PDWr-02is4LXCZgMhOxkW7dQZFaWwFqtLWtFVrSCy6rk0HFZiHYuxrtSsJrbomgtFzlUkC9JevqrQx9jMFYdAu4hfCvO1KxLzbrUrEvNuiZAnAAzpTqiCSpqNF6bDoPRg-p6_A_9ASWWcqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Malliavin Calculus and Euclidean Quantum Mechanics II. Variational Principle for Infinite Dimensional Processes</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cruzeiro, A.B. ; Zambrini, J.C.</creator><creatorcontrib>Cruzeiro, A.B. ; Zambrini, J.C.</creatorcontrib><description>A class of time reversible non-stationary diffusion processes with values on the classical Wiener space is constructed. These processes should be relevant to ("2-dimensional") Euclidean quantum field theory since they generalize those constructed before for non-relativistic quantum mechanics, along the lines of a strategy suggested by Schrödinger. Those processes are shown to be characterized by a stochastic variational principle and provide a probabilistic representation of the solutions of some infinite-dimensional heat equation. The Feynman-Kac formula on the Wiener space needed for this construction is also proved.</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1006/jfan.1995.1077</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of functional analysis, 1995-06, Vol.130 (2), p.450-476</ispartof><rights>1995 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2417-ae2a89d9b7ba42f95a0bccf0b824b819651ad1948b00221d58071f44bf183a6a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022123685710774$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cruzeiro, A.B.</creatorcontrib><creatorcontrib>Zambrini, J.C.</creatorcontrib><title>Malliavin Calculus and Euclidean Quantum Mechanics II. Variational Principle for Infinite Dimensional Processes</title><title>Journal of functional analysis</title><description>A class of time reversible non-stationary diffusion processes with values on the classical Wiener space is constructed. These processes should be relevant to ("2-dimensional") Euclidean quantum field theory since they generalize those constructed before for non-relativistic quantum mechanics, along the lines of a strategy suggested by Schrödinger. Those processes are shown to be characterized by a stochastic variational principle and provide a probabilistic representation of the solutions of some infinite-dimensional heat equation. The Feynman-Kac formula on the Wiener space needed for this construction is also proved.</description><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK5ePecPtCb9TI6yrlrYRQX1GqZpgrNk0yVpF_z3tqwePQ0D8wzv-xByy1nKGavudhZ8yqUsp7Wuz8iCM1klrBb5OVkwlmUJz_LqklzFuGOM86ooF6TfgnMIR_R0BU6PbowUfEfXo3bYGfD0bQQ_jHu6NfoLPOpImyalnxAQBuw9OPoa0Gs8OENtH2jjLXocDH3AvfHx76TXJkYTr8mFBRfNze9cko_H9fvqOdm8PDWr-02is4LXCZgMhOxkW7dQZFaWwFqtLWtFVrSCy6rk0HFZiHYuxrtSsJrbomgtFzlUkC9JevqrQx9jMFYdAu4hfCvO1KxLzbrUrEvNuiZAnAAzpTqiCSpqNF6bDoPRg-p6_A_9ASWWcqQ</recordid><startdate>199506</startdate><enddate>199506</enddate><creator>Cruzeiro, A.B.</creator><creator>Zambrini, J.C.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199506</creationdate><title>Malliavin Calculus and Euclidean Quantum Mechanics II. Variational Principle for Infinite Dimensional Processes</title><author>Cruzeiro, A.B. ; Zambrini, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2417-ae2a89d9b7ba42f95a0bccf0b824b819651ad1948b00221d58071f44bf183a6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruzeiro, A.B.</creatorcontrib><creatorcontrib>Zambrini, J.C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruzeiro, A.B.</au><au>Zambrini, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Malliavin Calculus and Euclidean Quantum Mechanics II. Variational Principle for Infinite Dimensional Processes</atitle><jtitle>Journal of functional analysis</jtitle><date>1995-06</date><risdate>1995</risdate><volume>130</volume><issue>2</issue><spage>450</spage><epage>476</epage><pages>450-476</pages><issn>0022-1236</issn><eissn>1096-0783</eissn><abstract>A class of time reversible non-stationary diffusion processes with values on the classical Wiener space is constructed. These processes should be relevant to ("2-dimensional") Euclidean quantum field theory since they generalize those constructed before for non-relativistic quantum mechanics, along the lines of a strategy suggested by Schrödinger. Those processes are shown to be characterized by a stochastic variational principle and provide a probabilistic representation of the solutions of some infinite-dimensional heat equation. The Feynman-Kac formula on the Wiener space needed for this construction is also proved.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jfan.1995.1077</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1236
ispartof Journal of functional analysis, 1995-06, Vol.130 (2), p.450-476
issn 0022-1236
1096-0783
language eng
recordid cdi_crossref_primary_10_1006_jfan_1995_1077
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
title Malliavin Calculus and Euclidean Quantum Mechanics II. Variational Principle for Infinite Dimensional Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Malliavin%20Calculus%20and%20Euclidean%20Quantum%20Mechanics%20II.%20Variational%20Principle%20for%20Infinite%20Dimensional%20Processes&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Cruzeiro,%20A.B.&rft.date=1995-06&rft.volume=130&rft.issue=2&rft.spage=450&rft.epage=476&rft.pages=450-476&rft.issn=0022-1236&rft.eissn=1096-0783&rft_id=info:doi/10.1006/jfan.1995.1077&rft_dat=%3Celsevier_cross%3ES0022123685710774%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022123685710774&rfr_iscdi=true