Resonant One Dimensional Nonlinear Geometric Optics
In this paper, we study the existence and resonant interaction of oscillatory wave trains in one space dimension, giving a rigorous proof of the validity of the corresponding expansions of weakly nonlinear optics. We consider both semilinear and quasilinear systems, the latter before shock formation...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 1993-05, Vol.114 (1), p.106-231 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 231 |
---|---|
container_issue | 1 |
container_start_page | 106 |
container_title | Journal of functional analysis |
container_volume | 114 |
creator | Joly, J.L. Metivier, G. Rauch, J. |
description | In this paper, we study the existence and resonant interaction of oscillatory wave trains in one space dimension, giving a rigorous proof of the validity of the corresponding expansions of weakly nonlinear optics. We consider both semilinear and quasilinear systems, the latter before shock formation. Some important features of the study are the following. (1) We prove the existence of families of exact solutions which have asymptotic expansions governed by weakly nonlinear optics. Equations with variable coefficients, nonconstant background fields and nonlinear phases are permitted. Our weak transversality hypotheses allow us to justify expansions where even a formal theory did not exist before. (2) We make a detailed study of resonances. The geometry associated with such resonances is related to the theory of planar webs. (3) We study the smoothness of the profiles. Their regularity is ruled by a sum law analogous to that describing the propagation of singularities in one dimension. (4) The expansions are justified up to the breakdown of the profiles which coincides with a suitably defined breakdown for exact solutions. |
doi_str_mv | 10.1006/jfan.1993.1065 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jfan_1993_1065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123683710657</els_id><sourcerecordid>S0022123683710657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-da0266f44fbfcd739b436e22f947a74c409a9c504bf0963f51320b41176920583</originalsourceid><addsrcrecordid>eNp1j81LxDAQxYMouK5ePffgtXXy2eYoq67C4oLoOaTpBLJ00yUpgv-9LRVvnoY3vDfzfoTcUqgogLo_eBsrqjWfpJJnZEVBqxLqhp-TFQBjJWVcXZKrnA8AlCohV4S_Yx6ijWOxj1g8hiPGHKZFX7wNsQ8RbSq2OBxxTMEV-9MYXL4mF972GW9-55p8Pj99bF7K3X77unnYlY5LOZadBaaUF8K33nU1163gChnzWtS2Fk6AttpJEK2finIvKWfQCkprpRnIhq9Jtdx1acg5oTenFI42fRsKZkY2M7KZkc2MPAXulsDJZmd7n2x0If-leMOoZHyyNYsNp_JfAZPJLmB02IWEbjTdEP778AOmfWhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Resonant One Dimensional Nonlinear Geometric Optics</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Joly, J.L. ; Metivier, G. ; Rauch, J.</creator><creatorcontrib>Joly, J.L. ; Metivier, G. ; Rauch, J.</creatorcontrib><description>In this paper, we study the existence and resonant interaction of oscillatory wave trains in one space dimension, giving a rigorous proof of the validity of the corresponding expansions of weakly nonlinear optics. We consider both semilinear and quasilinear systems, the latter before shock formation. Some important features of the study are the following. (1) We prove the existence of families of exact solutions which have asymptotic expansions governed by weakly nonlinear optics. Equations with variable coefficients, nonconstant background fields and nonlinear phases are permitted. Our weak transversality hypotheses allow us to justify expansions where even a formal theory did not exist before. (2) We make a detailed study of resonances. The geometry associated with such resonances is related to the theory of planar webs. (3) We study the smoothness of the profiles. Their regularity is ruled by a sum law analogous to that describing the propagation of singularities in one dimension. (4) The expansions are justified up to the breakdown of the profiles which coincides with a suitably defined breakdown for exact solutions.</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1006/jfan.1993.1065</identifier><identifier>CODEN: JFUAAW</identifier><language>eng</language><publisher>Orlando, FL: Elsevier Inc</publisher><subject>Exact sciences and technology ; Function theory, analysis ; Mathematical methods in physics ; Physics</subject><ispartof>Journal of functional analysis, 1993-05, Vol.114 (1), p.106-231</ispartof><rights>1993 Academic Press</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-da0266f44fbfcd739b436e22f947a74c409a9c504bf0963f51320b41176920583</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022123683710657$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3821523$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Joly, J.L.</creatorcontrib><creatorcontrib>Metivier, G.</creatorcontrib><creatorcontrib>Rauch, J.</creatorcontrib><title>Resonant One Dimensional Nonlinear Geometric Optics</title><title>Journal of functional analysis</title><description>In this paper, we study the existence and resonant interaction of oscillatory wave trains in one space dimension, giving a rigorous proof of the validity of the corresponding expansions of weakly nonlinear optics. We consider both semilinear and quasilinear systems, the latter before shock formation. Some important features of the study are the following. (1) We prove the existence of families of exact solutions which have asymptotic expansions governed by weakly nonlinear optics. Equations with variable coefficients, nonconstant background fields and nonlinear phases are permitted. Our weak transversality hypotheses allow us to justify expansions where even a formal theory did not exist before. (2) We make a detailed study of resonances. The geometry associated with such resonances is related to the theory of planar webs. (3) We study the smoothness of the profiles. Their regularity is ruled by a sum law analogous to that describing the propagation of singularities in one dimension. (4) The expansions are justified up to the breakdown of the profiles which coincides with a suitably defined breakdown for exact solutions.</description><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1j81LxDAQxYMouK5ePffgtXXy2eYoq67C4oLoOaTpBLJ00yUpgv-9LRVvnoY3vDfzfoTcUqgogLo_eBsrqjWfpJJnZEVBqxLqhp-TFQBjJWVcXZKrnA8AlCohV4S_Yx6ijWOxj1g8hiPGHKZFX7wNsQ8RbSq2OBxxTMEV-9MYXL4mF972GW9-55p8Pj99bF7K3X77unnYlY5LOZadBaaUF8K33nU1163gChnzWtS2Fk6AttpJEK2finIvKWfQCkprpRnIhq9Jtdx1acg5oTenFI42fRsKZkY2M7KZkc2MPAXulsDJZmd7n2x0If-leMOoZHyyNYsNp_JfAZPJLmB02IWEbjTdEP778AOmfWhg</recordid><startdate>19930515</startdate><enddate>19930515</enddate><creator>Joly, J.L.</creator><creator>Metivier, G.</creator><creator>Rauch, J.</creator><general>Elsevier Inc</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930515</creationdate><title>Resonant One Dimensional Nonlinear Geometric Optics</title><author>Joly, J.L. ; Metivier, G. ; Rauch, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-da0266f44fbfcd739b436e22f947a74c409a9c504bf0963f51320b41176920583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joly, J.L.</creatorcontrib><creatorcontrib>Metivier, G.</creatorcontrib><creatorcontrib>Rauch, J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joly, J.L.</au><au>Metivier, G.</au><au>Rauch, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant One Dimensional Nonlinear Geometric Optics</atitle><jtitle>Journal of functional analysis</jtitle><date>1993-05-15</date><risdate>1993</risdate><volume>114</volume><issue>1</issue><spage>106</spage><epage>231</epage><pages>106-231</pages><issn>0022-1236</issn><eissn>1096-0783</eissn><coden>JFUAAW</coden><abstract>In this paper, we study the existence and resonant interaction of oscillatory wave trains in one space dimension, giving a rigorous proof of the validity of the corresponding expansions of weakly nonlinear optics. We consider both semilinear and quasilinear systems, the latter before shock formation. Some important features of the study are the following. (1) We prove the existence of families of exact solutions which have asymptotic expansions governed by weakly nonlinear optics. Equations with variable coefficients, nonconstant background fields and nonlinear phases are permitted. Our weak transversality hypotheses allow us to justify expansions where even a formal theory did not exist before. (2) We make a detailed study of resonances. The geometry associated with such resonances is related to the theory of planar webs. (3) We study the smoothness of the profiles. Their regularity is ruled by a sum law analogous to that describing the propagation of singularities in one dimension. (4) The expansions are justified up to the breakdown of the profiles which coincides with a suitably defined breakdown for exact solutions.</abstract><cop>Orlando, FL</cop><cop>San Diego, CA</cop><cop>Brugge</cop><pub>Elsevier Inc</pub><doi>10.1006/jfan.1993.1065</doi><tpages>126</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1236 |
ispartof | Journal of functional analysis, 1993-05, Vol.114 (1), p.106-231 |
issn | 0022-1236 1096-0783 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jfan_1993_1065 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Exact sciences and technology Function theory, analysis Mathematical methods in physics Physics |
title | Resonant One Dimensional Nonlinear Geometric Optics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20One%20Dimensional%20Nonlinear%20Geometric%20Optics&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Joly,%20J.L.&rft.date=1993-05-15&rft.volume=114&rft.issue=1&rft.spage=106&rft.epage=231&rft.pages=106-231&rft.issn=0022-1236&rft.eissn=1096-0783&rft.coden=JFUAAW&rft_id=info:doi/10.1006/jfan.1993.1065&rft_dat=%3Celsevier_cross%3ES0022123683710657%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022123683710657&rfr_iscdi=true |