Almost Periodicity of Mild Solutions of Inhomogeneous Periodic Cauchy Problems
We consider a mild solution u of a well-posed, inhomogeneous, Cauchy problem, u(t)=A(t)u(t)+f(t), on a Banach space X, where A(·) is periodic. For a problem on R+, we show that u is asymptotically almost periodic if f is asymptotically almost periodic, u is bounded, uniformly continuous and totally...
Gespeichert in:
Veröffentlicht in: | Journal of Differential Equations 1999-08, Vol.156 (2), p.309-327 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 327 |
---|---|
container_issue | 2 |
container_start_page | 309 |
container_title | Journal of Differential Equations |
container_volume | 156 |
creator | Batty, Charles J.K. Hutter, Walter Räbiger, Frank |
description | We consider a mild solution u of a well-posed, inhomogeneous, Cauchy problem, u(t)=A(t)u(t)+f(t), on a Banach space X, where A(·) is periodic. For a problem on R+, we show that u is asymptotically almost periodic if f is asymptotically almost periodic, u is bounded, uniformly continuous and totally ergodic, and the spectrum of the monodromy operator V contains only countably many points of the unit circle. For a problem on R, we show that a bounded, uniformly continuous solution u is almost periodic if f is almost periodic and various supplementary conditions are satisfied. We also show that there is a unique bounded solution subject to certain spectral assumptions on V, f and u. |
doi_str_mv | 10.1006/jdeq.1998.3610 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jdeq_1998_3610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022039698936105</els_id><sourcerecordid>S0022039698936105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-6c9ea002f8eedc313394388aaef7fd832006d23bfe2569730eb80072833cda813</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKtXz_sHdp1k7G5yLMWPQtWCeg5pMmtTdjeabIX-e3epePM0MMzz8s7D2DWHggOUNztHXwVXShZYcjhhEw4KclGhOGUTACFyQFWes4uUdgCcz8rZhD3PmzakPltT9MF56_tDFursyTcuew3NvvehS-Nm2W1DGz6oo7BPf-fZwuzt9pCtY9g01KZLdlabJtHV75yy9_u7t8Vjvnp5WC7mq9yiEn1eWkVmqFRLImeRI6pblNIYqqvaSRTDP07gpiYxK1WFQBsJUAmJaJ2RHKesOObaGFKKVOvP6FsTD5qDHm3o0YYebejRxgDII0BDq29PUSfrqbPkfCTbaxf8f-gPWZBm3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Almost Periodicity of Mild Solutions of Inhomogeneous Periodic Cauchy Problems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Batty, Charles J.K. ; Hutter, Walter ; Räbiger, Frank</creator><creatorcontrib>Batty, Charles J.K. ; Hutter, Walter ; Räbiger, Frank</creatorcontrib><description>We consider a mild solution u of a well-posed, inhomogeneous, Cauchy problem, u(t)=A(t)u(t)+f(t), on a Banach space X, where A(·) is periodic. For a problem on R+, we show that u is asymptotically almost periodic if f is asymptotically almost periodic, u is bounded, uniformly continuous and totally ergodic, and the spectrum of the monodromy operator V contains only countably many points of the unit circle. For a problem on R, we show that a bounded, uniformly continuous solution u is almost periodic if f is almost periodic and various supplementary conditions are satisfied. We also show that there is a unique bounded solution subject to certain spectral assumptions on V, f and u.</description><identifier>ISSN: 0022-0396</identifier><identifier>EISSN: 1090-2732</identifier><identifier>DOI: 10.1006/jdeq.1998.3610</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>almost periodic ; Cauchy problem ; countable ; evolution family ; inhomogeneous ; monodromy operator ; periodic ; spectrum ; totally ergodic</subject><ispartof>Journal of Differential Equations, 1999-08, Vol.156 (2), p.309-327</ispartof><rights>1999 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-6c9ea002f8eedc313394388aaef7fd832006d23bfe2569730eb80072833cda813</citedby><cites>FETCH-LOGICAL-c392t-6c9ea002f8eedc313394388aaef7fd832006d23bfe2569730eb80072833cda813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jdeq.1998.3610$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Batty, Charles J.K.</creatorcontrib><creatorcontrib>Hutter, Walter</creatorcontrib><creatorcontrib>Räbiger, Frank</creatorcontrib><title>Almost Periodicity of Mild Solutions of Inhomogeneous Periodic Cauchy Problems</title><title>Journal of Differential Equations</title><description>We consider a mild solution u of a well-posed, inhomogeneous, Cauchy problem, u(t)=A(t)u(t)+f(t), on a Banach space X, where A(·) is periodic. For a problem on R+, we show that u is asymptotically almost periodic if f is asymptotically almost periodic, u is bounded, uniformly continuous and totally ergodic, and the spectrum of the monodromy operator V contains only countably many points of the unit circle. For a problem on R, we show that a bounded, uniformly continuous solution u is almost periodic if f is almost periodic and various supplementary conditions are satisfied. We also show that there is a unique bounded solution subject to certain spectral assumptions on V, f and u.</description><subject>almost periodic</subject><subject>Cauchy problem</subject><subject>countable</subject><subject>evolution family</subject><subject>inhomogeneous</subject><subject>monodromy operator</subject><subject>periodic</subject><subject>spectrum</subject><subject>totally ergodic</subject><issn>0022-0396</issn><issn>1090-2732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKtXz_sHdp1k7G5yLMWPQtWCeg5pMmtTdjeabIX-e3epePM0MMzz8s7D2DWHggOUNztHXwVXShZYcjhhEw4KclGhOGUTACFyQFWes4uUdgCcz8rZhD3PmzakPltT9MF56_tDFursyTcuew3NvvehS-Nm2W1DGz6oo7BPf-fZwuzt9pCtY9g01KZLdlabJtHV75yy9_u7t8Vjvnp5WC7mq9yiEn1eWkVmqFRLImeRI6pblNIYqqvaSRTDP07gpiYxK1WFQBsJUAmJaJ2RHKesOObaGFKKVOvP6FsTD5qDHm3o0YYebejRxgDII0BDq29PUSfrqbPkfCTbaxf8f-gPWZBm3w</recordid><startdate>19990810</startdate><enddate>19990810</enddate><creator>Batty, Charles J.K.</creator><creator>Hutter, Walter</creator><creator>Räbiger, Frank</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990810</creationdate><title>Almost Periodicity of Mild Solutions of Inhomogeneous Periodic Cauchy Problems</title><author>Batty, Charles J.K. ; Hutter, Walter ; Räbiger, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-6c9ea002f8eedc313394388aaef7fd832006d23bfe2569730eb80072833cda813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>almost periodic</topic><topic>Cauchy problem</topic><topic>countable</topic><topic>evolution family</topic><topic>inhomogeneous</topic><topic>monodromy operator</topic><topic>periodic</topic><topic>spectrum</topic><topic>totally ergodic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batty, Charles J.K.</creatorcontrib><creatorcontrib>Hutter, Walter</creatorcontrib><creatorcontrib>Räbiger, Frank</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of Differential Equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batty, Charles J.K.</au><au>Hutter, Walter</au><au>Räbiger, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Almost Periodicity of Mild Solutions of Inhomogeneous Periodic Cauchy Problems</atitle><jtitle>Journal of Differential Equations</jtitle><date>1999-08-10</date><risdate>1999</risdate><volume>156</volume><issue>2</issue><spage>309</spage><epage>327</epage><pages>309-327</pages><issn>0022-0396</issn><eissn>1090-2732</eissn><abstract>We consider a mild solution u of a well-posed, inhomogeneous, Cauchy problem, u(t)=A(t)u(t)+f(t), on a Banach space X, where A(·) is periodic. For a problem on R+, we show that u is asymptotically almost periodic if f is asymptotically almost periodic, u is bounded, uniformly continuous and totally ergodic, and the spectrum of the monodromy operator V contains only countably many points of the unit circle. For a problem on R, we show that a bounded, uniformly continuous solution u is almost periodic if f is almost periodic and various supplementary conditions are satisfied. We also show that there is a unique bounded solution subject to certain spectral assumptions on V, f and u.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jdeq.1998.3610</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0396 |
ispartof | Journal of Differential Equations, 1999-08, Vol.156 (2), p.309-327 |
issn | 0022-0396 1090-2732 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jdeq_1998_3610 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | almost periodic Cauchy problem countable evolution family inhomogeneous monodromy operator periodic spectrum totally ergodic |
title | Almost Periodicity of Mild Solutions of Inhomogeneous Periodic Cauchy Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Almost%20Periodicity%20of%20Mild%20Solutions%20of%20Inhomogeneous%20Periodic%20Cauchy%20Problems&rft.jtitle=Journal%20of%20Differential%20Equations&rft.au=Batty,%20Charles%20J.K.&rft.date=1999-08-10&rft.volume=156&rft.issue=2&rft.spage=309&rft.epage=327&rft.pages=309-327&rft.issn=0022-0396&rft.eissn=1090-2732&rft_id=info:doi/10.1006/jdeq.1998.3610&rft_dat=%3Celsevier_cross%3ES0022039698936105%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022039698936105&rfr_iscdi=true |