Vertices of Small Degree in Uniquely Hamiltonian Graphs

LetGbe a uniquely hamiltonian graph onnvertices. We show thatGhas a vertex of degree at mostclog28n+3, wherec=(2−log23)−1≈2.41. We show further thatGhas at least two vertices of degree less than four if it is planar and at least four vertices of degree two if it is bipartite.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series B 1998-11, Vol.74 (2), p.265-275
Hauptverfasser: Bondy, J.A., Jackson, Bill
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 2
container_start_page 265
container_title Journal of combinatorial theory. Series B
container_volume 74
creator Bondy, J.A.
Jackson, Bill
description LetGbe a uniquely hamiltonian graph onnvertices. We show thatGhas a vertex of degree at mostclog28n+3, wherec=(2−log23)−1≈2.41. We show further thatGhas at least two vertices of degree less than four if it is planar and at least four vertices of degree two if it is bipartite.
doi_str_mv 10.1006/jctb.1998.1845
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jctb_1998_1845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0095895698918457</els_id><sourcerecordid>S0095895698918457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-9fa20f0891f4cde788e9fa1635bcf9472ad160f01b993beb82e098b712e69dde3</originalsourceid><addsrcrecordid>eNp1j8tOwzAQRS0EEqWwZe0fSBg7L88SFWiRKrGAsrUcZwyu8ih2QOrfk6hsWY10NefqHsZuBaQCoLzb27FOBaJKhcqLM7YQgGUCCPKcLQCwSBQW5SW7inEPAFlWqQWr3imM3lLkg-OvnWlb_kAfgYj7nu96__VN7ZFvTOfbcei96fk6mMNnvGYXzrSRbv7uku2eHt9Wm2T7sn5e3W8Tm6EcE3RGggOFwuW2oUopmiJRZkVtHeaVNI0opwdRI2Y11UoSoKorIanEpqFsydJTrw1DjIGcPgTfmXDUAvSsrWdtPWvrWXsC1AmgadWPp6Cj9dRbanwgO-pm8P-hv-Y5Xqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vertices of Small Degree in Uniquely Hamiltonian Graphs</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bondy, J.A. ; Jackson, Bill</creator><creatorcontrib>Bondy, J.A. ; Jackson, Bill</creatorcontrib><description>LetGbe a uniquely hamiltonian graph onnvertices. We show thatGhas a vertex of degree at mostclog28n+3, wherec=(2−log23)−1≈2.41. We show further thatGhas at least two vertices of degree less than four if it is planar and at least four vertices of degree two if it is bipartite.</description><identifier>ISSN: 0095-8956</identifier><identifier>EISSN: 1096-0902</identifier><identifier>DOI: 10.1006/jctb.1998.1845</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of combinatorial theory. Series B, 1998-11, Vol.74 (2), p.265-275</ispartof><rights>1998 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-9fa20f0891f4cde788e9fa1635bcf9472ad160f01b993beb82e098b712e69dde3</citedby><cites>FETCH-LOGICAL-c392t-9fa20f0891f4cde788e9fa1635bcf9472ad160f01b993beb82e098b712e69dde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0095895698918457$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Bondy, J.A.</creatorcontrib><creatorcontrib>Jackson, Bill</creatorcontrib><title>Vertices of Small Degree in Uniquely Hamiltonian Graphs</title><title>Journal of combinatorial theory. Series B</title><description>LetGbe a uniquely hamiltonian graph onnvertices. We show thatGhas a vertex of degree at mostclog28n+3, wherec=(2−log23)−1≈2.41. We show further thatGhas at least two vertices of degree less than four if it is planar and at least four vertices of degree two if it is bipartite.</description><issn>0095-8956</issn><issn>1096-0902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1j8tOwzAQRS0EEqWwZe0fSBg7L88SFWiRKrGAsrUcZwyu8ih2QOrfk6hsWY10NefqHsZuBaQCoLzb27FOBaJKhcqLM7YQgGUCCPKcLQCwSBQW5SW7inEPAFlWqQWr3imM3lLkg-OvnWlb_kAfgYj7nu96__VN7ZFvTOfbcei96fk6mMNnvGYXzrSRbv7uku2eHt9Wm2T7sn5e3W8Tm6EcE3RGggOFwuW2oUopmiJRZkVtHeaVNI0opwdRI2Y11UoSoKorIanEpqFsydJTrw1DjIGcPgTfmXDUAvSsrWdtPWvrWXsC1AmgadWPp6Cj9dRbanwgO-pm8P-hv-Y5Xqg</recordid><startdate>199811</startdate><enddate>199811</enddate><creator>Bondy, J.A.</creator><creator>Jackson, Bill</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199811</creationdate><title>Vertices of Small Degree in Uniquely Hamiltonian Graphs</title><author>Bondy, J.A. ; Jackson, Bill</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-9fa20f0891f4cde788e9fa1635bcf9472ad160f01b993beb82e098b712e69dde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondy, J.A.</creatorcontrib><creatorcontrib>Jackson, Bill</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of combinatorial theory. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondy, J.A.</au><au>Jackson, Bill</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertices of Small Degree in Uniquely Hamiltonian Graphs</atitle><jtitle>Journal of combinatorial theory. Series B</jtitle><date>1998-11</date><risdate>1998</risdate><volume>74</volume><issue>2</issue><spage>265</spage><epage>275</epage><pages>265-275</pages><issn>0095-8956</issn><eissn>1096-0902</eissn><abstract>LetGbe a uniquely hamiltonian graph onnvertices. We show thatGhas a vertex of degree at mostclog28n+3, wherec=(2−log23)−1≈2.41. We show further thatGhas at least two vertices of degree less than four if it is planar and at least four vertices of degree two if it is bipartite.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jctb.1998.1845</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0095-8956
ispartof Journal of combinatorial theory. Series B, 1998-11, Vol.74 (2), p.265-275
issn 0095-8956
1096-0902
language eng
recordid cdi_crossref_primary_10_1006_jctb_1998_1845
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Vertices of Small Degree in Uniquely Hamiltonian Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertices%20of%20Small%20Degree%20in%20Uniquely%20Hamiltonian%20Graphs&rft.jtitle=Journal%20of%20combinatorial%20theory.%20Series%20B&rft.au=Bondy,%20J.A.&rft.date=1998-11&rft.volume=74&rft.issue=2&rft.spage=265&rft.epage=275&rft.pages=265-275&rft.issn=0095-8956&rft.eissn=1096-0902&rft_id=info:doi/10.1006/jctb.1998.1845&rft_dat=%3Celsevier_cross%3ES0095895698918457%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0095895698918457&rfr_iscdi=true