Graphs of Prescribed Girth and Bi-Degree
We say that a bipartite graph Γ( V 1 ∪ V 2, E) has bi-degree r, s if every vertex from V 1 has degree r and every vertex from V 2 has degree s. Γ is called an ( r, s, t)-graph if, additionally, the girth of Γ is 2 t. For t > 3, very few examples of ( r, s, t)-graphs were previously known. In this...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series B 1995-07, Vol.64 (2), p.228-239 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 2 |
container_start_page | 228 |
container_title | Journal of combinatorial theory. Series B |
container_volume | 64 |
creator | Furedi, Z. Lazebnik, F. Seress, A. Ustimenko, V.A. Woldar, A.J. |
description | We say that a bipartite graph
Γ(
V
1 ∪
V
2,
E) has bi-degree
r,
s if every vertex from
V
1 has degree
r and every vertex from
V
2 has degree
s.
Γ is called an (
r,
s,
t)-graph if, additionally, the girth of
Γ is 2
t. For
t > 3, very few examples of (
r,
s,
t)-graphs were previously known. In this paper we give a recursive construction of (
r,
s,
t)-graphs for all
r,
s,
t ≥ 2, as well as an algebraic construction of such graphs for all
r,
s ≥
t ≥ 3. |
doi_str_mv | 10.1006/jctb.1995.1033 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jctb_1995_1033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0095895685710337</els_id><sourcerecordid>S0095895685710337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-72843981b51e1e78a3b5e5bad7c11eb4fa5fafaf31490381f5d7c977befd08c83</originalsourceid><addsrcrecordid>eNp1jz1PwzAQhi0EEqGwMmdkcTnHcWyPUGhAqgQDzJY_ztQVNJUdIfHvSVRWdMPp9N5zuoeQawZLBtDd7vzolkxrMY2cn5CKge4oaGhOSQWgBVVadOfkopQdwLQiVUVu-mwP21IPsX7NWHxODkPdpzxua7sP9X2iD_iRES_JWbSfBa_--oK8rx_fVk9089I_r-421POmG6lsVMu1Yk4wZCiV5U6gcDZIzxi6NloR7VSctRq4YlFMiZbSYQygvOILsjze9XkoJWM0h5y-bP4xDMzsaWZPM3ua2XMC1BHA6avvhNkUn3DvMaSMfjRhSP-hv_tiWHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Graphs of Prescribed Girth and Bi-Degree</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Furedi, Z. ; Lazebnik, F. ; Seress, A. ; Ustimenko, V.A. ; Woldar, A.J.</creator><creatorcontrib>Furedi, Z. ; Lazebnik, F. ; Seress, A. ; Ustimenko, V.A. ; Woldar, A.J.</creatorcontrib><description>We say that a bipartite graph
Γ(
V
1 ∪
V
2,
E) has bi-degree
r,
s if every vertex from
V
1 has degree
r and every vertex from
V
2 has degree
s.
Γ is called an (
r,
s,
t)-graph if, additionally, the girth of
Γ is 2
t. For
t > 3, very few examples of (
r,
s,
t)-graphs were previously known. In this paper we give a recursive construction of (
r,
s,
t)-graphs for all
r,
s,
t ≥ 2, as well as an algebraic construction of such graphs for all
r,
s ≥
t ≥ 3.</description><identifier>ISSN: 0095-8956</identifier><identifier>EISSN: 1096-0902</identifier><identifier>DOI: 10.1006/jctb.1995.1033</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of combinatorial theory. Series B, 1995-07, Vol.64 (2), p.228-239</ispartof><rights>1995 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-72843981b51e1e78a3b5e5bad7c11eb4fa5fafaf31490381f5d7c977befd08c83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jctb.1995.1033$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Furedi, Z.</creatorcontrib><creatorcontrib>Lazebnik, F.</creatorcontrib><creatorcontrib>Seress, A.</creatorcontrib><creatorcontrib>Ustimenko, V.A.</creatorcontrib><creatorcontrib>Woldar, A.J.</creatorcontrib><title>Graphs of Prescribed Girth and Bi-Degree</title><title>Journal of combinatorial theory. Series B</title><description>We say that a bipartite graph
Γ(
V
1 ∪
V
2,
E) has bi-degree
r,
s if every vertex from
V
1 has degree
r and every vertex from
V
2 has degree
s.
Γ is called an (
r,
s,
t)-graph if, additionally, the girth of
Γ is 2
t. For
t > 3, very few examples of (
r,
s,
t)-graphs were previously known. In this paper we give a recursive construction of (
r,
s,
t)-graphs for all
r,
s,
t ≥ 2, as well as an algebraic construction of such graphs for all
r,
s ≥
t ≥ 3.</description><issn>0095-8956</issn><issn>1096-0902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAQhi0EEqGwMmdkcTnHcWyPUGhAqgQDzJY_ztQVNJUdIfHvSVRWdMPp9N5zuoeQawZLBtDd7vzolkxrMY2cn5CKge4oaGhOSQWgBVVadOfkopQdwLQiVUVu-mwP21IPsX7NWHxODkPdpzxua7sP9X2iD_iRES_JWbSfBa_--oK8rx_fVk9089I_r-421POmG6lsVMu1Yk4wZCiV5U6gcDZIzxi6NloR7VSctRq4YlFMiZbSYQygvOILsjze9XkoJWM0h5y-bP4xDMzsaWZPM3ua2XMC1BHA6avvhNkUn3DvMaSMfjRhSP-hv_tiWHc</recordid><startdate>19950701</startdate><enddate>19950701</enddate><creator>Furedi, Z.</creator><creator>Lazebnik, F.</creator><creator>Seress, A.</creator><creator>Ustimenko, V.A.</creator><creator>Woldar, A.J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950701</creationdate><title>Graphs of Prescribed Girth and Bi-Degree</title><author>Furedi, Z. ; Lazebnik, F. ; Seress, A. ; Ustimenko, V.A. ; Woldar, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-72843981b51e1e78a3b5e5bad7c11eb4fa5fafaf31490381f5d7c977befd08c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furedi, Z.</creatorcontrib><creatorcontrib>Lazebnik, F.</creatorcontrib><creatorcontrib>Seress, A.</creatorcontrib><creatorcontrib>Ustimenko, V.A.</creatorcontrib><creatorcontrib>Woldar, A.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of combinatorial theory. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furedi, Z.</au><au>Lazebnik, F.</au><au>Seress, A.</au><au>Ustimenko, V.A.</au><au>Woldar, A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphs of Prescribed Girth and Bi-Degree</atitle><jtitle>Journal of combinatorial theory. Series B</jtitle><date>1995-07-01</date><risdate>1995</risdate><volume>64</volume><issue>2</issue><spage>228</spage><epage>239</epage><pages>228-239</pages><issn>0095-8956</issn><eissn>1096-0902</eissn><abstract>We say that a bipartite graph
Γ(
V
1 ∪
V
2,
E) has bi-degree
r,
s if every vertex from
V
1 has degree
r and every vertex from
V
2 has degree
s.
Γ is called an (
r,
s,
t)-graph if, additionally, the girth of
Γ is 2
t. For
t > 3, very few examples of (
r,
s,
t)-graphs were previously known. In this paper we give a recursive construction of (
r,
s,
t)-graphs for all
r,
s,
t ≥ 2, as well as an algebraic construction of such graphs for all
r,
s ≥
t ≥ 3.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jctb.1995.1033</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-8956 |
ispartof | Journal of combinatorial theory. Series B, 1995-07, Vol.64 (2), p.228-239 |
issn | 0095-8956 1096-0902 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jctb_1995_1033 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
title | Graphs of Prescribed Girth and Bi-Degree |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphs%20of%20Prescribed%20Girth%20and%20Bi-Degree&rft.jtitle=Journal%20of%20combinatorial%20theory.%20Series%20B&rft.au=Furedi,%20Z.&rft.date=1995-07-01&rft.volume=64&rft.issue=2&rft.spage=228&rft.epage=239&rft.pages=228-239&rft.issn=0095-8956&rft.eissn=1096-0902&rft_id=info:doi/10.1006/jctb.1995.1033&rft_dat=%3Celsevier_cross%3ES0095895685710337%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0095895685710337&rfr_iscdi=true |