The Size of the Largest Antichain in the Partition Lattice
Consider the posetΠnof partitions of ann-element set, ordered by refinement. The sizes of the various ranks within this poset are the Stirling numbers of the second kind. Leta=12−elog(2)/4. We prove the following upper bound for the ratio of the size of the largest antichain to the size of the large...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series A 1998-08, Vol.83 (2), p.188-201 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 2 |
container_start_page | 188 |
container_title | Journal of combinatorial theory. Series A |
container_volume | 83 |
creator | Canfield, E.Rodney |
description | Consider the posetΠnof partitions of ann-element set, ordered by refinement. The sizes of the various ranks within this poset are the Stirling numbers of the second kind. Leta=12−elog(2)/4. We prove the following upper bound for the ratio of the size of the largest antichain to the size of the largest rank:d(Πn⩽)S(n,Kn)⩽c2na(logn)−a−1/4,for suitable constantc2andn>1. This upper bound exceeds the best known lower bound for the latter ratio by a multiplicative factor ofO(1). |
doi_str_mv | 10.1006/jcta.1998.2871 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jcta_1998_2871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0097316598928710</els_id><sourcerecordid>S0097316598928710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-a8db90fafd4884752781993e3c9130b2290b5974a8851f810c686591773be1a3</originalsourceid><addsrcrecordid>eNp1j09LxDAQxYMoWFevnvsFWmeatkm8LYv_oKBg7yFNp24WbSUJgn56U9arMDAD773h_Ri7RigRoL052GhKVEqWlRR4wjIE1RYglTplGYASBce2OWcXIRwAoGqwzthtv6f81f1Qvkx5THdn_BuFmG_n6OzeuDlPswovxkcX3TInS0waXbKzybwHuvrbG9bf3_W7x6J7fnjabbvC8qqNhZHjoGAy01hLWYumEjKV5MStQg5DVSkYGiVqI2WDk0SwrWwbhULwgdDwDSuPb61fQvA06U_vPoz_1gh6BdcruF7B9QqeAvIYoFTqy5HXwTqaLY3Ok416XNx_0V-FCV1f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Size of the Largest Antichain in the Partition Lattice</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Canfield, E.Rodney</creator><creatorcontrib>Canfield, E.Rodney</creatorcontrib><description>Consider the posetΠnof partitions of ann-element set, ordered by refinement. The sizes of the various ranks within this poset are the Stirling numbers of the second kind. Leta=12−elog(2)/4. We prove the following upper bound for the ratio of the size of the largest antichain to the size of the largest rank:d(Πn⩽)S(n,Kn)⩽c2na(logn)−a−1/4,for suitable constantc2andn>1. This upper bound exceeds the best known lower bound for the latter ratio by a multiplicative factor ofO(1).</description><identifier>ISSN: 0097-3165</identifier><identifier>EISSN: 1096-0899</identifier><identifier>DOI: 10.1006/jcta.1998.2871</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of combinatorial theory. Series A, 1998-08, Vol.83 (2), p.188-201</ispartof><rights>1998 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-a8db90fafd4884752781993e3c9130b2290b5974a8851f810c686591773be1a3</citedby><cites>FETCH-LOGICAL-c326t-a8db90fafd4884752781993e3c9130b2290b5974a8851f810c686591773be1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jcta.1998.2871$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Canfield, E.Rodney</creatorcontrib><title>The Size of the Largest Antichain in the Partition Lattice</title><title>Journal of combinatorial theory. Series A</title><description>Consider the posetΠnof partitions of ann-element set, ordered by refinement. The sizes of the various ranks within this poset are the Stirling numbers of the second kind. Leta=12−elog(2)/4. We prove the following upper bound for the ratio of the size of the largest antichain to the size of the largest rank:d(Πn⩽)S(n,Kn)⩽c2na(logn)−a−1/4,for suitable constantc2andn>1. This upper bound exceeds the best known lower bound for the latter ratio by a multiplicative factor ofO(1).</description><issn>0097-3165</issn><issn>1096-0899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1j09LxDAQxYMoWFevnvsFWmeatkm8LYv_oKBg7yFNp24WbSUJgn56U9arMDAD773h_Ri7RigRoL052GhKVEqWlRR4wjIE1RYglTplGYASBce2OWcXIRwAoGqwzthtv6f81f1Qvkx5THdn_BuFmG_n6OzeuDlPswovxkcX3TInS0waXbKzybwHuvrbG9bf3_W7x6J7fnjabbvC8qqNhZHjoGAy01hLWYumEjKV5MStQg5DVSkYGiVqI2WDk0SwrWwbhULwgdDwDSuPb61fQvA06U_vPoz_1gh6BdcruF7B9QqeAvIYoFTqy5HXwTqaLY3Ok416XNx_0V-FCV1f</recordid><startdate>199808</startdate><enddate>199808</enddate><creator>Canfield, E.Rodney</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199808</creationdate><title>The Size of the Largest Antichain in the Partition Lattice</title><author>Canfield, E.Rodney</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-a8db90fafd4884752781993e3c9130b2290b5974a8851f810c686591773be1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canfield, E.Rodney</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of combinatorial theory. Series A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canfield, E.Rodney</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Size of the Largest Antichain in the Partition Lattice</atitle><jtitle>Journal of combinatorial theory. Series A</jtitle><date>1998-08</date><risdate>1998</risdate><volume>83</volume><issue>2</issue><spage>188</spage><epage>201</epage><pages>188-201</pages><issn>0097-3165</issn><eissn>1096-0899</eissn><abstract>Consider the posetΠnof partitions of ann-element set, ordered by refinement. The sizes of the various ranks within this poset are the Stirling numbers of the second kind. Leta=12−elog(2)/4. We prove the following upper bound for the ratio of the size of the largest antichain to the size of the largest rank:d(Πn⩽)S(n,Kn)⩽c2na(logn)−a−1/4,for suitable constantc2andn>1. This upper bound exceeds the best known lower bound for the latter ratio by a multiplicative factor ofO(1).</abstract><pub>Elsevier Inc</pub><doi>10.1006/jcta.1998.2871</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-3165 |
ispartof | Journal of combinatorial theory. Series A, 1998-08, Vol.83 (2), p.188-201 |
issn | 0097-3165 1096-0899 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jcta_1998_2871 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
title | The Size of the Largest Antichain in the Partition Lattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T19%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Size%20of%20the%20Largest%20Antichain%20in%20the%20Partition%20Lattice&rft.jtitle=Journal%20of%20combinatorial%20theory.%20Series%20A&rft.au=Canfield,%20E.Rodney&rft.date=1998-08&rft.volume=83&rft.issue=2&rft.spage=188&rft.epage=201&rft.pages=188-201&rft.issn=0097-3165&rft.eissn=1096-0899&rft_id=info:doi/10.1006/jcta.1998.2871&rft_dat=%3Celsevier_cross%3ES0097316598928710%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0097316598928710&rfr_iscdi=true |