Parallel Multigrid Preconditioning of the Conjugate Gradient Method for Systems of Subsurface Hydrology

Parallel preconditioners are considered for improving the convergence rate of the conjugate gradient method for solving sparse symmetric positive definite systems generated by finite element models of subsurface flow. The difficulties of adapting effective sequential preconditioners to the parallel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1998-05, Vol.142 (1), p.148-162
Hauptverfasser: Brieger, Leesa, Lecca, Giuditta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 1
container_start_page 148
container_title Journal of computational physics
container_volume 142
creator Brieger, Leesa
Lecca, Giuditta
description Parallel preconditioners are considered for improving the convergence rate of the conjugate gradient method for solving sparse symmetric positive definite systems generated by finite element models of subsurface flow. The difficulties of adapting effective sequential preconditioners to the parallel environment are illustrated by our treatment of incomplete Cholesky preconditioning. These difficulties are avoided with multigrid preconditioning, which can be extended naturally to many processors so that the preconditioner remains global and effective.The coarse grid correction which defines the multigrid preconditioner is outlined and its parallel implementation with the distributed finite element data structure is presented, along with some examples of its use as a parallel preconditioner.
doi_str_mv 10.1006/jcph.1998.5916
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jcph_1998_5916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999198959162</els_id><sourcerecordid>S0021999198959162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-d0bd16e958d34de50eb8b6cb6ee34097e6668fb84cc7a125141af46aebce9b33</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKtb1_kDMybzSJOlFG2FFgvtPuRxZ5oynZQkI8y_t0Pdurqb8x3O_RB6pSSnhLC3k7kccyoEz2tB2R2aUSJIViwou0czQgqaCSHoI3qK8UQI4XXFZ6jdqaC6Djq8Hbrk2uAs3gUwvrcuOd-7vsW-wekIeOn709CqBHgVlHXQJ7yFdPQWNz7g_RgTnOMU3g86DqFRBvB6tMF3vh2f0UOjuggvf3eODp8fh-U623yvvpbvm8wUnKXMEm0pA1FzW1YWagKaa2Y0AygrIhbAGOON5pUxC0WLmlZUNRVToA0IXZZzlN9qTfAxBmjkJbizCqOkRE6W5GRJTpbkZOkK8BsA11E_DoKM5vqaAeuuFpK03v2H_gIUm3Fm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parallel Multigrid Preconditioning of the Conjugate Gradient Method for Systems of Subsurface Hydrology</title><source>Elsevier ScienceDirect Journals</source><creator>Brieger, Leesa ; Lecca, Giuditta</creator><creatorcontrib>Brieger, Leesa ; Lecca, Giuditta</creatorcontrib><description>Parallel preconditioners are considered for improving the convergence rate of the conjugate gradient method for solving sparse symmetric positive definite systems generated by finite element models of subsurface flow. The difficulties of adapting effective sequential preconditioners to the parallel environment are illustrated by our treatment of incomplete Cholesky preconditioning. These difficulties are avoided with multigrid preconditioning, which can be extended naturally to many processors so that the preconditioner remains global and effective.The coarse grid correction which defines the multigrid preconditioner is outlined and its parallel implementation with the distributed finite element data structure is presented, along with some examples of its use as a parallel preconditioner.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1006/jcph.1998.5916</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of computational physics, 1998-05, Vol.142 (1), p.148-162</ispartof><rights>1998 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-d0bd16e958d34de50eb8b6cb6ee34097e6668fb84cc7a125141af46aebce9b33</citedby><cites>FETCH-LOGICAL-c286t-d0bd16e958d34de50eb8b6cb6ee34097e6668fb84cc7a125141af46aebce9b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999198959162$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Brieger, Leesa</creatorcontrib><creatorcontrib>Lecca, Giuditta</creatorcontrib><title>Parallel Multigrid Preconditioning of the Conjugate Gradient Method for Systems of Subsurface Hydrology</title><title>Journal of computational physics</title><description>Parallel preconditioners are considered for improving the convergence rate of the conjugate gradient method for solving sparse symmetric positive definite systems generated by finite element models of subsurface flow. The difficulties of adapting effective sequential preconditioners to the parallel environment are illustrated by our treatment of incomplete Cholesky preconditioning. These difficulties are avoided with multigrid preconditioning, which can be extended naturally to many processors so that the preconditioner remains global and effective.The coarse grid correction which defines the multigrid preconditioner is outlined and its parallel implementation with the distributed finite element data structure is presented, along with some examples of its use as a parallel preconditioner.</description><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKtb1_kDMybzSJOlFG2FFgvtPuRxZ5oynZQkI8y_t0Pdurqb8x3O_RB6pSSnhLC3k7kccyoEz2tB2R2aUSJIViwou0czQgqaCSHoI3qK8UQI4XXFZ6jdqaC6Djq8Hbrk2uAs3gUwvrcuOd-7vsW-wekIeOn709CqBHgVlHXQJ7yFdPQWNz7g_RgTnOMU3g86DqFRBvB6tMF3vh2f0UOjuggvf3eODp8fh-U623yvvpbvm8wUnKXMEm0pA1FzW1YWagKaa2Y0AygrIhbAGOON5pUxC0WLmlZUNRVToA0IXZZzlN9qTfAxBmjkJbizCqOkRE6W5GRJTpbkZOkK8BsA11E_DoKM5vqaAeuuFpK03v2H_gIUm3Fm</recordid><startdate>19980501</startdate><enddate>19980501</enddate><creator>Brieger, Leesa</creator><creator>Lecca, Giuditta</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980501</creationdate><title>Parallel Multigrid Preconditioning of the Conjugate Gradient Method for Systems of Subsurface Hydrology</title><author>Brieger, Leesa ; Lecca, Giuditta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-d0bd16e958d34de50eb8b6cb6ee34097e6668fb84cc7a125141af46aebce9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brieger, Leesa</creatorcontrib><creatorcontrib>Lecca, Giuditta</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brieger, Leesa</au><au>Lecca, Giuditta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Multigrid Preconditioning of the Conjugate Gradient Method for Systems of Subsurface Hydrology</atitle><jtitle>Journal of computational physics</jtitle><date>1998-05-01</date><risdate>1998</risdate><volume>142</volume><issue>1</issue><spage>148</spage><epage>162</epage><pages>148-162</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Parallel preconditioners are considered for improving the convergence rate of the conjugate gradient method for solving sparse symmetric positive definite systems generated by finite element models of subsurface flow. The difficulties of adapting effective sequential preconditioners to the parallel environment are illustrated by our treatment of incomplete Cholesky preconditioning. These difficulties are avoided with multigrid preconditioning, which can be extended naturally to many processors so that the preconditioner remains global and effective.The coarse grid correction which defines the multigrid preconditioner is outlined and its parallel implementation with the distributed finite element data structure is presented, along with some examples of its use as a parallel preconditioner.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jcph.1998.5916</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1998-05, Vol.142 (1), p.148-162
issn 0021-9991
1090-2716
language eng
recordid cdi_crossref_primary_10_1006_jcph_1998_5916
source Elsevier ScienceDirect Journals
title Parallel Multigrid Preconditioning of the Conjugate Gradient Method for Systems of Subsurface Hydrology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Multigrid%20Preconditioning%20of%20the%20Conjugate%20Gradient%20Method%20for%20Systems%20of%20Subsurface%20Hydrology&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Brieger,%20Leesa&rft.date=1998-05-01&rft.volume=142&rft.issue=1&rft.spage=148&rft.epage=162&rft.pages=148-162&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1006/jcph.1998.5916&rft_dat=%3Celsevier_cross%3ES0021999198959162%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021999198959162&rfr_iscdi=true