Thermodynamic properties and pseudorotation of chlorocyclopentane
The results of a study of chlorocyclopentane in different phase states are given. The heat capacity of crystalline and liquid chlorocyclopentane was measured by vacuum adiabatic calorimetry ( T = 6 K to 301 K). One solid-to-solid transition cr(II) → cr(I) at T = 169.35 K was discovered. The enthalpy...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical thermodynamics 1993, Vol.25 (10), p.1169-1181 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1181 |
---|---|
container_issue | 10 |
container_start_page | 1169 |
container_title | The Journal of chemical thermodynamics |
container_volume | 25 |
creator | Diky, V.V. Kabo, G.J. Kozyro, A.A. Krasulin, A.P. Sevruk, V.M. |
description | The results of a study of chlorocyclopentane in different phase states are given. The heat capacity of crystalline and liquid chlorocyclopentane was measured by vacuum adiabatic calorimetry (
T = 6 K to 301 K). One solid-to-solid transition cr(II) → cr(I) at
T = 169.35 K was discovered. The enthalpy of this transition is Δ
trs
H
o
m = (7631±18) J·mol
-1. The fusion properties:
T
fus = 180.0 K and Δ
fus
H
m = (637.3±4.4) J·mol
-1 were obtained from the calorimetric investigations. The vaporization enthalpy from
T = 299 K to 311 K was determined with a heat-conduction differential microcalorimeter. Δ
vap
H
o
m(298.15 K) = (38.79±0.40) kJ·mol
-1. The conventional molar entropy of gaseous chlorocyclopentane
S
o
m(g, 298.15 K) = (339.54±1.7) J·K
-1·mol
-1 was calculated on the base of these calorimetric methods. It was found by recording i.r. spectra that the liquid and crystal I consist of a mixture of the axial and equatorial conformers as a "semi-chair". On the contrary, the crystal II contains a considerably smaller fraction of the equatorial conformer. So, the spectral study shows that the residual entropy at
T = 0 caused by the mixing of conformers is negligible. The standard thermodynamic properties of chlorocyclopentane in the gaseous state (
T = 100 K to 1000 K) were calculated using molecular and spectral quantities. The statistical results are in the best accord with experimental values where the conformational transitions are considered as a hindered rotation. The standard molar values
C
o
p. m
, Δ
T
0
S
o
m, Δ
T
0
H
o
m/
T, and Φ
o
m of liquid and gaseous chlorocyclopentane at the temperature 298.15 K are, respectively: {152.43±0.61), (238.05±1.20), (119.63±0.50), (118.41±1.30); 98.86, (339.54±2.80), 63.58, and 275.87} J·K
-1. The standard molar thermodynamic functions of formation of liquid and gaseous chlorocyclopentane at
T = 298.15 K were determined from our and literature values: Δ
f
H
o
m(g) = -(119.7±2.0) kJ·mol
-1, Δ
f
H
o
m(l) = -(158.5±2.1) kJ·mol
-1, Δ
f
G
o
m(g) = -(33.82±3.0) kJ·mol
-1, and Δ
f
G
o
m(l) = -(42.35±3.1) kJ·mol
-1. |
doi_str_mv | 10.1006/jcht.1993.1114 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jcht_1993_1114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021961483711146</els_id><sourcerecordid>S0021961483711146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-b200d6eaf5d7c9b057529ba1f3fa239431a5746c9d34f5754bcf6149cee4d9b73</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRi0EEqWwMmdgTbBjx6nHqgKKVImlzJZzPquu0jiyDVL_PYmK2JhOp_ve3ekR8shoxSiVz0c45IopxSvGmLgiC0aVLLms5TVZUFqzUkkmbsldSkdKqeKKLsh6f8B4CvY8mJOHYoxhxJg9psIMthgTftkQQzbZh6EIroBDP_Vwhn4KDtkMeE9unOkTPvzWJfl8fdlvtuXu4-19s96VwBuWy66m1Eo0rrEtqI42bVOrzjDHnam5EpyZphUSlOXCTUPRgZveVYAorOpaviTVZS_EkFJEp8foTyaeNaN6FqBnAXoWoGcBE_B0AUaTwPQumgF8-qP4aobUFFtdYjg9_-0x6gQeB0DrI0LWNvj_LvwAAZFwTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermodynamic properties and pseudorotation of chlorocyclopentane</title><source>Elsevier ScienceDirect Journals</source><creator>Diky, V.V. ; Kabo, G.J. ; Kozyro, A.A. ; Krasulin, A.P. ; Sevruk, V.M.</creator><creatorcontrib>Diky, V.V. ; Kabo, G.J. ; Kozyro, A.A. ; Krasulin, A.P. ; Sevruk, V.M.</creatorcontrib><description>The results of a study of chlorocyclopentane in different phase states are given. The heat capacity of crystalline and liquid chlorocyclopentane was measured by vacuum adiabatic calorimetry (
T = 6 K to 301 K). One solid-to-solid transition cr(II) → cr(I) at
T = 169.35 K was discovered. The enthalpy of this transition is Δ
trs
H
o
m = (7631±18) J·mol
-1. The fusion properties:
T
fus = 180.0 K and Δ
fus
H
m = (637.3±4.4) J·mol
-1 were obtained from the calorimetric investigations. The vaporization enthalpy from
T = 299 K to 311 K was determined with a heat-conduction differential microcalorimeter. Δ
vap
H
o
m(298.15 K) = (38.79±0.40) kJ·mol
-1. The conventional molar entropy of gaseous chlorocyclopentane
S
o
m(g, 298.15 K) = (339.54±1.7) J·K
-1·mol
-1 was calculated on the base of these calorimetric methods. It was found by recording i.r. spectra that the liquid and crystal I consist of a mixture of the axial and equatorial conformers as a "semi-chair". On the contrary, the crystal II contains a considerably smaller fraction of the equatorial conformer. So, the spectral study shows that the residual entropy at
T = 0 caused by the mixing of conformers is negligible. The standard thermodynamic properties of chlorocyclopentane in the gaseous state (
T = 100 K to 1000 K) were calculated using molecular and spectral quantities. The statistical results are in the best accord with experimental values where the conformational transitions are considered as a hindered rotation. The standard molar values
C
o
p. m
, Δ
T
0
S
o
m, Δ
T
0
H
o
m/
T, and Φ
o
m of liquid and gaseous chlorocyclopentane at the temperature 298.15 K are, respectively: {152.43±0.61), (238.05±1.20), (119.63±0.50), (118.41±1.30); 98.86, (339.54±2.80), 63.58, and 275.87} J·K
-1. The standard molar thermodynamic functions of formation of liquid and gaseous chlorocyclopentane at
T = 298.15 K were determined from our and literature values: Δ
f
H
o
m(g) = -(119.7±2.0) kJ·mol
-1, Δ
f
H
o
m(l) = -(158.5±2.1) kJ·mol
-1, Δ
f
G
o
m(g) = -(33.82±3.0) kJ·mol
-1, and Δ
f
G
o
m(l) = -(42.35±3.1) kJ·mol
-1.</description><identifier>ISSN: 0021-9614</identifier><identifier>EISSN: 1096-3626</identifier><identifier>DOI: 10.1006/jcht.1993.1114</identifier><identifier>CODEN: JCTDAF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Chemical thermodynamics ; Chemistry ; Elements, mineral and organic compounds ; Exact sciences and technology ; General and physical chemistry ; Thermodynamic properties</subject><ispartof>The Journal of chemical thermodynamics, 1993, Vol.25 (10), p.1169-1181</ispartof><rights>1993 Academic Press</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-b200d6eaf5d7c9b057529ba1f3fa239431a5746c9d34f5754bcf6149cee4d9b73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021961483711146$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3810069$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Diky, V.V.</creatorcontrib><creatorcontrib>Kabo, G.J.</creatorcontrib><creatorcontrib>Kozyro, A.A.</creatorcontrib><creatorcontrib>Krasulin, A.P.</creatorcontrib><creatorcontrib>Sevruk, V.M.</creatorcontrib><title>Thermodynamic properties and pseudorotation of chlorocyclopentane</title><title>The Journal of chemical thermodynamics</title><description>The results of a study of chlorocyclopentane in different phase states are given. The heat capacity of crystalline and liquid chlorocyclopentane was measured by vacuum adiabatic calorimetry (
T = 6 K to 301 K). One solid-to-solid transition cr(II) → cr(I) at
T = 169.35 K was discovered. The enthalpy of this transition is Δ
trs
H
o
m = (7631±18) J·mol
-1. The fusion properties:
T
fus = 180.0 K and Δ
fus
H
m = (637.3±4.4) J·mol
-1 were obtained from the calorimetric investigations. The vaporization enthalpy from
T = 299 K to 311 K was determined with a heat-conduction differential microcalorimeter. Δ
vap
H
o
m(298.15 K) = (38.79±0.40) kJ·mol
-1. The conventional molar entropy of gaseous chlorocyclopentane
S
o
m(g, 298.15 K) = (339.54±1.7) J·K
-1·mol
-1 was calculated on the base of these calorimetric methods. It was found by recording i.r. spectra that the liquid and crystal I consist of a mixture of the axial and equatorial conformers as a "semi-chair". On the contrary, the crystal II contains a considerably smaller fraction of the equatorial conformer. So, the spectral study shows that the residual entropy at
T = 0 caused by the mixing of conformers is negligible. The standard thermodynamic properties of chlorocyclopentane in the gaseous state (
T = 100 K to 1000 K) were calculated using molecular and spectral quantities. The statistical results are in the best accord with experimental values where the conformational transitions are considered as a hindered rotation. The standard molar values
C
o
p. m
, Δ
T
0
S
o
m, Δ
T
0
H
o
m/
T, and Φ
o
m of liquid and gaseous chlorocyclopentane at the temperature 298.15 K are, respectively: {152.43±0.61), (238.05±1.20), (119.63±0.50), (118.41±1.30); 98.86, (339.54±2.80), 63.58, and 275.87} J·K
-1. The standard molar thermodynamic functions of formation of liquid and gaseous chlorocyclopentane at
T = 298.15 K were determined from our and literature values: Δ
f
H
o
m(g) = -(119.7±2.0) kJ·mol
-1, Δ
f
H
o
m(l) = -(158.5±2.1) kJ·mol
-1, Δ
f
G
o
m(g) = -(33.82±3.0) kJ·mol
-1, and Δ
f
G
o
m(l) = -(42.35±3.1) kJ·mol
-1.</description><subject>Chemical thermodynamics</subject><subject>Chemistry</subject><subject>Elements, mineral and organic compounds</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Thermodynamic properties</subject><issn>0021-9614</issn><issn>1096-3626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQRi0EEqWwMmdgTbBjx6nHqgKKVImlzJZzPquu0jiyDVL_PYmK2JhOp_ve3ekR8shoxSiVz0c45IopxSvGmLgiC0aVLLms5TVZUFqzUkkmbsldSkdKqeKKLsh6f8B4CvY8mJOHYoxhxJg9psIMthgTftkQQzbZh6EIroBDP_Vwhn4KDtkMeE9unOkTPvzWJfl8fdlvtuXu4-19s96VwBuWy66m1Eo0rrEtqI42bVOrzjDHnam5EpyZphUSlOXCTUPRgZveVYAorOpaviTVZS_EkFJEp8foTyaeNaN6FqBnAXoWoGcBE_B0AUaTwPQumgF8-qP4aobUFFtdYjg9_-0x6gQeB0DrI0LWNvj_LvwAAZFwTQ</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Diky, V.V.</creator><creator>Kabo, G.J.</creator><creator>Kozyro, A.A.</creator><creator>Krasulin, A.P.</creator><creator>Sevruk, V.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1993</creationdate><title>Thermodynamic properties and pseudorotation of chlorocyclopentane</title><author>Diky, V.V. ; Kabo, G.J. ; Kozyro, A.A. ; Krasulin, A.P. ; Sevruk, V.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-b200d6eaf5d7c9b057529ba1f3fa239431a5746c9d34f5754bcf6149cee4d9b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Chemical thermodynamics</topic><topic>Chemistry</topic><topic>Elements, mineral and organic compounds</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diky, V.V.</creatorcontrib><creatorcontrib>Kabo, G.J.</creatorcontrib><creatorcontrib>Kozyro, A.A.</creatorcontrib><creatorcontrib>Krasulin, A.P.</creatorcontrib><creatorcontrib>Sevruk, V.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Journal of chemical thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diky, V.V.</au><au>Kabo, G.J.</au><au>Kozyro, A.A.</au><au>Krasulin, A.P.</au><au>Sevruk, V.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic properties and pseudorotation of chlorocyclopentane</atitle><jtitle>The Journal of chemical thermodynamics</jtitle><date>1993</date><risdate>1993</risdate><volume>25</volume><issue>10</issue><spage>1169</spage><epage>1181</epage><pages>1169-1181</pages><issn>0021-9614</issn><eissn>1096-3626</eissn><coden>JCTDAF</coden><abstract>The results of a study of chlorocyclopentane in different phase states are given. The heat capacity of crystalline and liquid chlorocyclopentane was measured by vacuum adiabatic calorimetry (
T = 6 K to 301 K). One solid-to-solid transition cr(II) → cr(I) at
T = 169.35 K was discovered. The enthalpy of this transition is Δ
trs
H
o
m = (7631±18) J·mol
-1. The fusion properties:
T
fus = 180.0 K and Δ
fus
H
m = (637.3±4.4) J·mol
-1 were obtained from the calorimetric investigations. The vaporization enthalpy from
T = 299 K to 311 K was determined with a heat-conduction differential microcalorimeter. Δ
vap
H
o
m(298.15 K) = (38.79±0.40) kJ·mol
-1. The conventional molar entropy of gaseous chlorocyclopentane
S
o
m(g, 298.15 K) = (339.54±1.7) J·K
-1·mol
-1 was calculated on the base of these calorimetric methods. It was found by recording i.r. spectra that the liquid and crystal I consist of a mixture of the axial and equatorial conformers as a "semi-chair". On the contrary, the crystal II contains a considerably smaller fraction of the equatorial conformer. So, the spectral study shows that the residual entropy at
T = 0 caused by the mixing of conformers is negligible. The standard thermodynamic properties of chlorocyclopentane in the gaseous state (
T = 100 K to 1000 K) were calculated using molecular and spectral quantities. The statistical results are in the best accord with experimental values where the conformational transitions are considered as a hindered rotation. The standard molar values
C
o
p. m
, Δ
T
0
S
o
m, Δ
T
0
H
o
m/
T, and Φ
o
m of liquid and gaseous chlorocyclopentane at the temperature 298.15 K are, respectively: {152.43±0.61), (238.05±1.20), (119.63±0.50), (118.41±1.30); 98.86, (339.54±2.80), 63.58, and 275.87} J·K
-1. The standard molar thermodynamic functions of formation of liquid and gaseous chlorocyclopentane at
T = 298.15 K were determined from our and literature values: Δ
f
H
o
m(g) = -(119.7±2.0) kJ·mol
-1, Δ
f
H
o
m(l) = -(158.5±2.1) kJ·mol
-1, Δ
f
G
o
m(g) = -(33.82±3.0) kJ·mol
-1, and Δ
f
G
o
m(l) = -(42.35±3.1) kJ·mol
-1.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1006/jcht.1993.1114</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9614 |
ispartof | The Journal of chemical thermodynamics, 1993, Vol.25 (10), p.1169-1181 |
issn | 0021-9614 1096-3626 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jcht_1993_1114 |
source | Elsevier ScienceDirect Journals |
subjects | Chemical thermodynamics Chemistry Elements, mineral and organic compounds Exact sciences and technology General and physical chemistry Thermodynamic properties |
title | Thermodynamic properties and pseudorotation of chlorocyclopentane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20properties%20and%20pseudorotation%20of%20chlorocyclopentane&rft.jtitle=The%20Journal%20of%20chemical%20thermodynamics&rft.au=Diky,%20V.V.&rft.date=1993&rft.volume=25&rft.issue=10&rft.spage=1169&rft.epage=1181&rft.pages=1169-1181&rft.issn=0021-9614&rft.eissn=1096-3626&rft.coden=JCTDAF&rft_id=info:doi/10.1006/jcht.1993.1114&rft_dat=%3Celsevier_cross%3ES0021961483711146%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021961483711146&rfr_iscdi=true |