Unusual Redox Properties of Bismuth in Sol–Gel Bi-Mo-Ti Mixed Oxides

Novel bismuth molybdenum titanium oxide catalysts, prepared via different sol–gel routes, were studied by X-ray photoelectron spectroscopy (XPS) at ambient temperature after evacuation and after reaction with hydrogen or oxygen. The surface Bi3+and Mo6+species of several sol–gel catalysts could be r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of catalysis 1998-07, Vol.177 (1), p.53-59
Hauptverfasser: Grunwaldt, Jan-Dierk, Wildberger, Manuel D., Mallat, Tamas, Baiker, Alfons
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 53
container_title Journal of catalysis
container_volume 177
creator Grunwaldt, Jan-Dierk
Wildberger, Manuel D.
Mallat, Tamas
Baiker, Alfons
description Novel bismuth molybdenum titanium oxide catalysts, prepared via different sol–gel routes, were studied by X-ray photoelectron spectroscopy (XPS) at ambient temperature after evacuation and after reaction with hydrogen or oxygen. The surface Bi3+and Mo6+species of several sol–gel catalysts could be reduced and re-oxidized at room temperature, whereas the two reference materials γ-bismuth molybdate and Bi2O3were not reduced in hydrogen (10−4mbar) at temperatures below 573 K. The reduction of Bi3+to Bi0was observed to be remarkably more facile than that of Mo6+to Mo5+. Reduction of surface bismuth species in hydrogen and re-oxidation in oxygen could be followed by XPS at room temperature in the pressure range of 10−6–10−4mbar over a time scale of a few minutes to several hours. The facile reduction of surface Bi3+is probably not connected to the bulk or surface composition. It is more likely due to the unique morphology of the bismuth molybdenum oxides stabilized by titania in the sol–gel materials. It emerged from XRD and Raman investigations that the mean crystallite size of Bi- and Mo-containing phases was around 3 nm, even after calcination at 773 K. XPS and thermoanalysis revealed that the particle size of the sol–gel mixed oxides was considerably larger (>10 nm), and the reduction of Bi3+and its re-oxidation took place only in the topmost layer at ambient temperature.
doi_str_mv 10.1006/jcat.1998.2072
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jcat_1998_2072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951798920723</els_id><sourcerecordid>S0021951798920723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-58c268e93afd48719ddacbb7514b1410fc0b491f0e47ebf1bb41e455b59b2b6e3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFavnvfgNXEnySbZoxZbhZaKtuewH7O4JU3Kbir15n_wH_pLTKh48zQwvM87w0PINbAYGMtvN1p2MQhRxgkrkhMyAiZYlOQiOyUjxhKIBIfinFyEsGEMgPNyRKbrZh_2sqYvaNoDffbtDn3nMNDW0nsXtvvujbqGvrb19-fXDOt-GS3aaOXowh3Q0OXBGQyX5MzKOuDV7xyT9fRhNXmM5svZ0-RuHukUeBfxUid5iSKV1mRlAcIYqZUqOGQKMmBWM5UJsAyzApUFpTLAjHPFhUpUjumYxMde7dsQPNpq591W-o8KWDVYqAYL1WChGiz0wM0R2MmgZW29bLQLf1SS8rwQeR8rjzHsn3936KugHTYajfOou8q07r8LP9rxcLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unusual Redox Properties of Bismuth in Sol–Gel Bi-Mo-Ti Mixed Oxides</title><source>Elsevier ScienceDirect Journals</source><creator>Grunwaldt, Jan-Dierk ; Wildberger, Manuel D. ; Mallat, Tamas ; Baiker, Alfons</creator><creatorcontrib>Grunwaldt, Jan-Dierk ; Wildberger, Manuel D. ; Mallat, Tamas ; Baiker, Alfons</creatorcontrib><description>Novel bismuth molybdenum titanium oxide catalysts, prepared via different sol–gel routes, were studied by X-ray photoelectron spectroscopy (XPS) at ambient temperature after evacuation and after reaction with hydrogen or oxygen. The surface Bi3+and Mo6+species of several sol–gel catalysts could be reduced and re-oxidized at room temperature, whereas the two reference materials γ-bismuth molybdate and Bi2O3were not reduced in hydrogen (10−4mbar) at temperatures below 573 K. The reduction of Bi3+to Bi0was observed to be remarkably more facile than that of Mo6+to Mo5+. Reduction of surface bismuth species in hydrogen and re-oxidation in oxygen could be followed by XPS at room temperature in the pressure range of 10−6–10−4mbar over a time scale of a few minutes to several hours. The facile reduction of surface Bi3+is probably not connected to the bulk or surface composition. It is more likely due to the unique morphology of the bismuth molybdenum oxides stabilized by titania in the sol–gel materials. It emerged from XRD and Raman investigations that the mean crystallite size of Bi- and Mo-containing phases was around 3 nm, even after calcination at 773 K. XPS and thermoanalysis revealed that the particle size of the sol–gel mixed oxides was considerably larger (&gt;10 nm), and the reduction of Bi3+and its re-oxidation took place only in the topmost layer at ambient temperature.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1006/jcat.1998.2072</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Catalysis ; Catalysts: preparations and properties ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of catalysis, 1998-07, Vol.177 (1), p.53-59</ispartof><rights>1998 Academic Press</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-58c268e93afd48719ddacbb7514b1410fc0b491f0e47ebf1bb41e455b59b2b6e3</citedby><cites>FETCH-LOGICAL-c315t-58c268e93afd48719ddacbb7514b1410fc0b491f0e47ebf1bb41e455b59b2b6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021951798920723$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2356796$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grunwaldt, Jan-Dierk</creatorcontrib><creatorcontrib>Wildberger, Manuel D.</creatorcontrib><creatorcontrib>Mallat, Tamas</creatorcontrib><creatorcontrib>Baiker, Alfons</creatorcontrib><title>Unusual Redox Properties of Bismuth in Sol–Gel Bi-Mo-Ti Mixed Oxides</title><title>Journal of catalysis</title><description>Novel bismuth molybdenum titanium oxide catalysts, prepared via different sol–gel routes, were studied by X-ray photoelectron spectroscopy (XPS) at ambient temperature after evacuation and after reaction with hydrogen or oxygen. The surface Bi3+and Mo6+species of several sol–gel catalysts could be reduced and re-oxidized at room temperature, whereas the two reference materials γ-bismuth molybdate and Bi2O3were not reduced in hydrogen (10−4mbar) at temperatures below 573 K. The reduction of Bi3+to Bi0was observed to be remarkably more facile than that of Mo6+to Mo5+. Reduction of surface bismuth species in hydrogen and re-oxidation in oxygen could be followed by XPS at room temperature in the pressure range of 10−6–10−4mbar over a time scale of a few minutes to several hours. The facile reduction of surface Bi3+is probably not connected to the bulk or surface composition. It is more likely due to the unique morphology of the bismuth molybdenum oxides stabilized by titania in the sol–gel materials. It emerged from XRD and Raman investigations that the mean crystallite size of Bi- and Mo-containing phases was around 3 nm, even after calcination at 773 K. XPS and thermoanalysis revealed that the particle size of the sol–gel mixed oxides was considerably larger (&gt;10 nm), and the reduction of Bi3+and its re-oxidation took place only in the topmost layer at ambient temperature.</description><subject>Catalysis</subject><subject>Catalysts: preparations and properties</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFavnvfgNXEnySbZoxZbhZaKtuewH7O4JU3Kbir15n_wH_pLTKh48zQwvM87w0PINbAYGMtvN1p2MQhRxgkrkhMyAiZYlOQiOyUjxhKIBIfinFyEsGEMgPNyRKbrZh_2sqYvaNoDffbtDn3nMNDW0nsXtvvujbqGvrb19-fXDOt-GS3aaOXowh3Q0OXBGQyX5MzKOuDV7xyT9fRhNXmM5svZ0-RuHukUeBfxUid5iSKV1mRlAcIYqZUqOGQKMmBWM5UJsAyzApUFpTLAjHPFhUpUjumYxMde7dsQPNpq591W-o8KWDVYqAYL1WChGiz0wM0R2MmgZW29bLQLf1SS8rwQeR8rjzHsn3936KugHTYajfOou8q07r8LP9rxcLw</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Grunwaldt, Jan-Dierk</creator><creator>Wildberger, Manuel D.</creator><creator>Mallat, Tamas</creator><creator>Baiker, Alfons</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980701</creationdate><title>Unusual Redox Properties of Bismuth in Sol–Gel Bi-Mo-Ti Mixed Oxides</title><author>Grunwaldt, Jan-Dierk ; Wildberger, Manuel D. ; Mallat, Tamas ; Baiker, Alfons</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-58c268e93afd48719ddacbb7514b1410fc0b491f0e47ebf1bb41e455b59b2b6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Catalysis</topic><topic>Catalysts: preparations and properties</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grunwaldt, Jan-Dierk</creatorcontrib><creatorcontrib>Wildberger, Manuel D.</creatorcontrib><creatorcontrib>Mallat, Tamas</creatorcontrib><creatorcontrib>Baiker, Alfons</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grunwaldt, Jan-Dierk</au><au>Wildberger, Manuel D.</au><au>Mallat, Tamas</au><au>Baiker, Alfons</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unusual Redox Properties of Bismuth in Sol–Gel Bi-Mo-Ti Mixed Oxides</atitle><jtitle>Journal of catalysis</jtitle><date>1998-07-01</date><risdate>1998</risdate><volume>177</volume><issue>1</issue><spage>53</spage><epage>59</epage><pages>53-59</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>Novel bismuth molybdenum titanium oxide catalysts, prepared via different sol–gel routes, were studied by X-ray photoelectron spectroscopy (XPS) at ambient temperature after evacuation and after reaction with hydrogen or oxygen. The surface Bi3+and Mo6+species of several sol–gel catalysts could be reduced and re-oxidized at room temperature, whereas the two reference materials γ-bismuth molybdate and Bi2O3were not reduced in hydrogen (10−4mbar) at temperatures below 573 K. The reduction of Bi3+to Bi0was observed to be remarkably more facile than that of Mo6+to Mo5+. Reduction of surface bismuth species in hydrogen and re-oxidation in oxygen could be followed by XPS at room temperature in the pressure range of 10−6–10−4mbar over a time scale of a few minutes to several hours. The facile reduction of surface Bi3+is probably not connected to the bulk or surface composition. It is more likely due to the unique morphology of the bismuth molybdenum oxides stabilized by titania in the sol–gel materials. It emerged from XRD and Raman investigations that the mean crystallite size of Bi- and Mo-containing phases was around 3 nm, even after calcination at 773 K. XPS and thermoanalysis revealed that the particle size of the sol–gel mixed oxides was considerably larger (&gt;10 nm), and the reduction of Bi3+and its re-oxidation took place only in the topmost layer at ambient temperature.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1006/jcat.1998.2072</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9517
ispartof Journal of catalysis, 1998-07, Vol.177 (1), p.53-59
issn 0021-9517
1090-2694
language eng
recordid cdi_crossref_primary_10_1006_jcat_1998_2072
source Elsevier ScienceDirect Journals
subjects Catalysis
Catalysts: preparations and properties
Chemistry
Exact sciences and technology
General and physical chemistry
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Unusual Redox Properties of Bismuth in Sol–Gel Bi-Mo-Ti Mixed Oxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unusual%20Redox%20Properties%20of%20Bismuth%20in%20Sol%E2%80%93Gel%20Bi-Mo-Ti%20Mixed%20Oxides&rft.jtitle=Journal%20of%20catalysis&rft.au=Grunwaldt,%20Jan-Dierk&rft.date=1998-07-01&rft.volume=177&rft.issue=1&rft.spage=53&rft.epage=59&rft.pages=53-59&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1006/jcat.1998.2072&rft_dat=%3Celsevier_cross%3ES0021951798920723%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021951798920723&rfr_iscdi=true