Lower Semicontinuity Concepts, Continuous Selections, and Set Valued Metric Projections

A number of semicontinuity concepts and the relations between them are discussed. Characterizations are given for when the (set-valued) metric projection PM onto a proximinal subspace M of a normed linear space X is approximate lower semicontinuous or 2-lower semicontinuous. A geometric characteriza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory 2002-03, Vol.115 (1), p.120-143
Hauptverfasser: Brown, A.L., Deutsch, Frank, Indumathi, V., Kenderov, Petar S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 1
container_start_page 120
container_title Journal of approximation theory
container_volume 115
creator Brown, A.L.
Deutsch, Frank
Indumathi, V.
Kenderov, Petar S.
description A number of semicontinuity concepts and the relations between them are discussed. Characterizations are given for when the (set-valued) metric projection PM onto a proximinal subspace M of a normed linear space X is approximate lower semicontinuous or 2-lower semicontinuous. A geometric characterization is given of those normed linear spaces X such that the metric projection onto every one-dimensional subspace has a continuous C0(T) and L1(μ) that have this property are determined.
doi_str_mv 10.1006/jath.2001.3654
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jath_2001_3654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021904501936548</els_id><sourcerecordid>S0021904501936548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-ba1870ebe83daa66e0e28699452f697c66a9f362e45d5e9beb484fb1e239da7b3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKtb1_MDnDHvTpZS1AoVBV_LkEnuYEo7KUmq9N-bod26ug_OuZz7IXRNcEMwlrcrk78bijFpmBT8BE0IVrLGnOFTNMGYklphLs7RRUqroiJCkAn6WoZfiNUbbLwNQ_bDzud9NQ-DhW1ON2M3LsMuFc0abPZhKGszuDLn6tOsd-CqZ8jR2-o1htVRconOerNOcHWsU_TxcP8-X9TLl8en-d2ytozKXHeGtDMMHbTMGSMlYKCtVIoL2ks1s1Ia1TNJgQsnQHXQ8Zb3HQHKlDOzjk1Rc7hrY0gpQq-30W9M3GuC9YhFj1j0iEWPWIqhPRigpPrxEHWyHsq7zseSXbvg_7P-AfJgaso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lower Semicontinuity Concepts, Continuous Selections, and Set Valued Metric Projections</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Brown, A.L. ; Deutsch, Frank ; Indumathi, V. ; Kenderov, Petar S.</creator><creatorcontrib>Brown, A.L. ; Deutsch, Frank ; Indumathi, V. ; Kenderov, Petar S.</creatorcontrib><description>A number of semicontinuity concepts and the relations between them are discussed. Characterizations are given for when the (set-valued) metric projection PM onto a proximinal subspace M of a normed linear space X is approximate lower semicontinuous or 2-lower semicontinuous. A geometric characterization is given of those normed linear spaces X such that the metric projection onto every one-dimensional subspace has a continuous C0(T) and L1(μ) that have this property are determined.</description><identifier>ISSN: 0021-9045</identifier><identifier>EISSN: 1096-0430</identifier><identifier>DOI: 10.1006/jath.2001.3654</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>approximate lower semicontinuity ; best approximation ; continuous selection ; derived mapping ; geometry of Banach spaces ; lower semicontinuity ; Lp-space ; metric projection ; set valued mapping ; space of continuous functions ; weak lower semicontinuity</subject><ispartof>Journal of approximation theory, 2002-03, Vol.115 (1), p.120-143</ispartof><rights>2002 Elsevier Science (USA)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-ba1870ebe83daa66e0e28699452f697c66a9f362e45d5e9beb484fb1e239da7b3</citedby><cites>FETCH-LOGICAL-c326t-ba1870ebe83daa66e0e28699452f697c66a9f362e45d5e9beb484fb1e239da7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021904501936548$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Brown, A.L.</creatorcontrib><creatorcontrib>Deutsch, Frank</creatorcontrib><creatorcontrib>Indumathi, V.</creatorcontrib><creatorcontrib>Kenderov, Petar S.</creatorcontrib><title>Lower Semicontinuity Concepts, Continuous Selections, and Set Valued Metric Projections</title><title>Journal of approximation theory</title><description>A number of semicontinuity concepts and the relations between them are discussed. Characterizations are given for when the (set-valued) metric projection PM onto a proximinal subspace M of a normed linear space X is approximate lower semicontinuous or 2-lower semicontinuous. A geometric characterization is given of those normed linear spaces X such that the metric projection onto every one-dimensional subspace has a continuous C0(T) and L1(μ) that have this property are determined.</description><subject>approximate lower semicontinuity</subject><subject>best approximation</subject><subject>continuous selection</subject><subject>derived mapping</subject><subject>geometry of Banach spaces</subject><subject>lower semicontinuity</subject><subject>Lp-space</subject><subject>metric projection</subject><subject>set valued mapping</subject><subject>space of continuous functions</subject><subject>weak lower semicontinuity</subject><issn>0021-9045</issn><issn>1096-0430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKtb1_MDnDHvTpZS1AoVBV_LkEnuYEo7KUmq9N-bod26ug_OuZz7IXRNcEMwlrcrk78bijFpmBT8BE0IVrLGnOFTNMGYklphLs7RRUqroiJCkAn6WoZfiNUbbLwNQ_bDzud9NQ-DhW1ON2M3LsMuFc0abPZhKGszuDLn6tOsd-CqZ8jR2-o1htVRconOerNOcHWsU_TxcP8-X9TLl8en-d2ytozKXHeGtDMMHbTMGSMlYKCtVIoL2ks1s1Ia1TNJgQsnQHXQ8Zb3HQHKlDOzjk1Rc7hrY0gpQq-30W9M3GuC9YhFj1j0iEWPWIqhPRigpPrxEHWyHsq7zseSXbvg_7P-AfJgaso</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Brown, A.L.</creator><creator>Deutsch, Frank</creator><creator>Indumathi, V.</creator><creator>Kenderov, Petar S.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020301</creationdate><title>Lower Semicontinuity Concepts, Continuous Selections, and Set Valued Metric Projections</title><author>Brown, A.L. ; Deutsch, Frank ; Indumathi, V. ; Kenderov, Petar S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-ba1870ebe83daa66e0e28699452f697c66a9f362e45d5e9beb484fb1e239da7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>approximate lower semicontinuity</topic><topic>best approximation</topic><topic>continuous selection</topic><topic>derived mapping</topic><topic>geometry of Banach spaces</topic><topic>lower semicontinuity</topic><topic>Lp-space</topic><topic>metric projection</topic><topic>set valued mapping</topic><topic>space of continuous functions</topic><topic>weak lower semicontinuity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, A.L.</creatorcontrib><creatorcontrib>Deutsch, Frank</creatorcontrib><creatorcontrib>Indumathi, V.</creatorcontrib><creatorcontrib>Kenderov, Petar S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of approximation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, A.L.</au><au>Deutsch, Frank</au><au>Indumathi, V.</au><au>Kenderov, Petar S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower Semicontinuity Concepts, Continuous Selections, and Set Valued Metric Projections</atitle><jtitle>Journal of approximation theory</jtitle><date>2002-03-01</date><risdate>2002</risdate><volume>115</volume><issue>1</issue><spage>120</spage><epage>143</epage><pages>120-143</pages><issn>0021-9045</issn><eissn>1096-0430</eissn><abstract>A number of semicontinuity concepts and the relations between them are discussed. Characterizations are given for when the (set-valued) metric projection PM onto a proximinal subspace M of a normed linear space X is approximate lower semicontinuous or 2-lower semicontinuous. A geometric characterization is given of those normed linear spaces X such that the metric projection onto every one-dimensional subspace has a continuous C0(T) and L1(μ) that have this property are determined.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jath.2001.3654</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9045
ispartof Journal of approximation theory, 2002-03, Vol.115 (1), p.120-143
issn 0021-9045
1096-0430
language eng
recordid cdi_crossref_primary_10_1006_jath_2001_3654
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects approximate lower semicontinuity
best approximation
continuous selection
derived mapping
geometry of Banach spaces
lower semicontinuity
Lp-space
metric projection
set valued mapping
space of continuous functions
weak lower semicontinuity
title Lower Semicontinuity Concepts, Continuous Selections, and Set Valued Metric Projections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20Semicontinuity%20Concepts,%20Continuous%20Selections,%20and%20Set%20Valued%20Metric%20Projections&rft.jtitle=Journal%20of%20approximation%20theory&rft.au=Brown,%20A.L.&rft.date=2002-03-01&rft.volume=115&rft.issue=1&rft.spage=120&rft.epage=143&rft.pages=120-143&rft.issn=0021-9045&rft.eissn=1096-0430&rft_id=info:doi/10.1006/jath.2001.3654&rft_dat=%3Celsevier_cross%3ES0021904501936548%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021904501936548&rfr_iscdi=true