Maximal Inequalities and Lebesgue's Differentiation Theorem for Best Approximant by Constant over Balls

For f∈Lp(Rn), with 1⩽p0 and x∈Rn we denote by Tε(f)(x) the set of every best constant approximant to f in the ball B(x, ε). In this paper we extend the operators Tεp to the space Lp−1(Rn)+L∞(Rn), where L0 is the set of every measurable functions finite almost everywhere. Moreover we consider the max...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory 2001-06, Vol.110 (2), p.171-179
Hauptverfasser: Mazzone, Fernando, Cuenya, Héctor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 2
container_start_page 171
container_title Journal of approximation theory
container_volume 110
creator Mazzone, Fernando
Cuenya, Héctor
description For f∈Lp(Rn), with 1⩽p0 and x∈Rn we denote by Tε(f)(x) the set of every best constant approximant to f in the ball B(x, ε). In this paper we extend the operators Tεp to the space Lp−1(Rn)+L∞(Rn), where L0 is the set of every measurable functions finite almost everywhere. Moreover we consider the maximal operators associated to the operators Tεp and we prove maximal inequalities for them. As a consequence of these inequalities we obtain a generalization of Lebesgue's Differentiation Theorem.
doi_str_mv 10.1006/jath.2001.3559
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jath_2001_3559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021904501935592</els_id><sourcerecordid>S0021904501935592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-8b6ecec36492472618e6ed3adc9b975c1b917f1172cadf62270716615f242da3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwMntjSvBzYqcZS_mqVMTS3XKc59ZVGhfbrei_JxGsTO8N91xdHULugeXAmHzc6bTNOWOQF0LUF2QCrJYZKwt2SSaMcchqVoprchPjbkiBEDAhmw_97fa6o8sev466c8lhpLpv6QobjJsjPkT67KzFgH1yOjnf0_UWfcA9tT7QJ4yJzg-H4MeePtHmTBe-j2n8_QmHhO66eEuurO4i3v3dKVm_vqwX79nq8225mK8yU3CZslkj0aApZFnzsuISZiixLXRr6qauhIGmhsoCVNzo1krOK1aBlCAsL3mriynJf2tN8DEGtOoQhlnhrICp0ZIaLanRkhotDcDsF8Bh1MlhUNE47A22LqBJqvXuP_QH3WJviA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Maximal Inequalities and Lebesgue's Differentiation Theorem for Best Approximant by Constant over Balls</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mazzone, Fernando ; Cuenya, Héctor</creator><creatorcontrib>Mazzone, Fernando ; Cuenya, Héctor</creatorcontrib><description>For f∈Lp(Rn), with 1⩽p&lt;∞, ε&gt;0 and x∈Rn we denote by Tε(f)(x) the set of every best constant approximant to f in the ball B(x, ε). In this paper we extend the operators Tεp to the space Lp−1(Rn)+L∞(Rn), where L0 is the set of every measurable functions finite almost everywhere. Moreover we consider the maximal operators associated to the operators Tεp and we prove maximal inequalities for them. As a consequence of these inequalities we obtain a generalization of Lebesgue's Differentiation Theorem.</description><identifier>ISSN: 0021-9045</identifier><identifier>EISSN: 1096-0430</identifier><identifier>DOI: 10.1006/jath.2001.3559</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>best approximant ; maximal inequalities, a.e. convergence</subject><ispartof>Journal of approximation theory, 2001-06, Vol.110 (2), p.171-179</ispartof><rights>2001 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-8b6ecec36492472618e6ed3adc9b975c1b917f1172cadf62270716615f242da3</citedby><cites>FETCH-LOGICAL-c326t-8b6ecec36492472618e6ed3adc9b975c1b917f1172cadf62270716615f242da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jath.2001.3559$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mazzone, Fernando</creatorcontrib><creatorcontrib>Cuenya, Héctor</creatorcontrib><title>Maximal Inequalities and Lebesgue's Differentiation Theorem for Best Approximant by Constant over Balls</title><title>Journal of approximation theory</title><description>For f∈Lp(Rn), with 1⩽p&lt;∞, ε&gt;0 and x∈Rn we denote by Tε(f)(x) the set of every best constant approximant to f in the ball B(x, ε). In this paper we extend the operators Tεp to the space Lp−1(Rn)+L∞(Rn), where L0 is the set of every measurable functions finite almost everywhere. Moreover we consider the maximal operators associated to the operators Tεp and we prove maximal inequalities for them. As a consequence of these inequalities we obtain a generalization of Lebesgue's Differentiation Theorem.</description><subject>best approximant</subject><subject>maximal inequalities, a.e. convergence</subject><issn>0021-9045</issn><issn>1096-0430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwMntjSvBzYqcZS_mqVMTS3XKc59ZVGhfbrei_JxGsTO8N91xdHULugeXAmHzc6bTNOWOQF0LUF2QCrJYZKwt2SSaMcchqVoprchPjbkiBEDAhmw_97fa6o8sev466c8lhpLpv6QobjJsjPkT67KzFgH1yOjnf0_UWfcA9tT7QJ4yJzg-H4MeePtHmTBe-j2n8_QmHhO66eEuurO4i3v3dKVm_vqwX79nq8225mK8yU3CZslkj0aApZFnzsuISZiixLXRr6qauhIGmhsoCVNzo1krOK1aBlCAsL3mriynJf2tN8DEGtOoQhlnhrICp0ZIaLanRkhotDcDsF8Bh1MlhUNE47A22LqBJqvXuP_QH3WJviA</recordid><startdate>200106</startdate><enddate>200106</enddate><creator>Mazzone, Fernando</creator><creator>Cuenya, Héctor</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200106</creationdate><title>Maximal Inequalities and Lebesgue's Differentiation Theorem for Best Approximant by Constant over Balls</title><author>Mazzone, Fernando ; Cuenya, Héctor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-8b6ecec36492472618e6ed3adc9b975c1b917f1172cadf62270716615f242da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>best approximant</topic><topic>maximal inequalities, a.e. convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazzone, Fernando</creatorcontrib><creatorcontrib>Cuenya, Héctor</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of approximation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazzone, Fernando</au><au>Cuenya, Héctor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximal Inequalities and Lebesgue's Differentiation Theorem for Best Approximant by Constant over Balls</atitle><jtitle>Journal of approximation theory</jtitle><date>2001-06</date><risdate>2001</risdate><volume>110</volume><issue>2</issue><spage>171</spage><epage>179</epage><pages>171-179</pages><issn>0021-9045</issn><eissn>1096-0430</eissn><abstract>For f∈Lp(Rn), with 1⩽p&lt;∞, ε&gt;0 and x∈Rn we denote by Tε(f)(x) the set of every best constant approximant to f in the ball B(x, ε). In this paper we extend the operators Tεp to the space Lp−1(Rn)+L∞(Rn), where L0 is the set of every measurable functions finite almost everywhere. Moreover we consider the maximal operators associated to the operators Tεp and we prove maximal inequalities for them. As a consequence of these inequalities we obtain a generalization of Lebesgue's Differentiation Theorem.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jath.2001.3559</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9045
ispartof Journal of approximation theory, 2001-06, Vol.110 (2), p.171-179
issn 0021-9045
1096-0430
language eng
recordid cdi_crossref_primary_10_1006_jath_2001_3559
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects best approximant
maximal inequalities, a.e. convergence
title Maximal Inequalities and Lebesgue's Differentiation Theorem for Best Approximant by Constant over Balls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximal%20Inequalities%20and%20Lebesgue's%20Differentiation%20Theorem%20for%20Best%20Approximant%20by%20Constant%20over%20Balls&rft.jtitle=Journal%20of%20approximation%20theory&rft.au=Mazzone,%20Fernando&rft.date=2001-06&rft.volume=110&rft.issue=2&rft.spage=171&rft.epage=179&rft.pages=171-179&rft.issn=0021-9045&rft.eissn=1096-0430&rft_id=info:doi/10.1006/jath.2001.3559&rft_dat=%3Celsevier_cross%3ES0021904501935592%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021904501935592&rfr_iscdi=true