Maximal Inequalities and Lebesgue's Differentiation Theorem for Best Approximant by Constant over Balls
For f∈Lp(Rn), with 1⩽p0 and x∈Rn we denote by Tε(f)(x) the set of every best constant approximant to f in the ball B(x, ε). In this paper we extend the operators Tεp to the space Lp−1(Rn)+L∞(Rn), where L0 is the set of every measurable functions finite almost everywhere. Moreover we consider the max...
Gespeichert in:
Veröffentlicht in: | Journal of approximation theory 2001-06, Vol.110 (2), p.171-179 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | 2 |
container_start_page | 171 |
container_title | Journal of approximation theory |
container_volume | 110 |
creator | Mazzone, Fernando Cuenya, Héctor |
description | For f∈Lp(Rn), with 1⩽p0 and x∈Rn we denote by Tε(f)(x) the set of every best constant approximant to f in the ball B(x, ε). In this paper we extend the operators Tεp to the space Lp−1(Rn)+L∞(Rn), where L0 is the set of every measurable functions finite almost everywhere. Moreover we consider the maximal operators associated to the operators Tεp and we prove maximal inequalities for them. As a consequence of these inequalities we obtain a generalization of Lebesgue's Differentiation Theorem. |
doi_str_mv | 10.1006/jath.2001.3559 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jath_2001_3559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021904501935592</els_id><sourcerecordid>S0021904501935592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-8b6ecec36492472618e6ed3adc9b975c1b917f1172cadf62270716615f242da3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwMntjSvBzYqcZS_mqVMTS3XKc59ZVGhfbrei_JxGsTO8N91xdHULugeXAmHzc6bTNOWOQF0LUF2QCrJYZKwt2SSaMcchqVoprchPjbkiBEDAhmw_97fa6o8sev466c8lhpLpv6QobjJsjPkT67KzFgH1yOjnf0_UWfcA9tT7QJ4yJzg-H4MeePtHmTBe-j2n8_QmHhO66eEuurO4i3v3dKVm_vqwX79nq8225mK8yU3CZslkj0aApZFnzsuISZiixLXRr6qauhIGmhsoCVNzo1krOK1aBlCAsL3mriynJf2tN8DEGtOoQhlnhrICp0ZIaLanRkhotDcDsF8Bh1MlhUNE47A22LqBJqvXuP_QH3WJviA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Maximal Inequalities and Lebesgue's Differentiation Theorem for Best Approximant by Constant over Balls</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mazzone, Fernando ; Cuenya, Héctor</creator><creatorcontrib>Mazzone, Fernando ; Cuenya, Héctor</creatorcontrib><description>For f∈Lp(Rn), with 1⩽p<∞, ε>0 and x∈Rn we denote by Tε(f)(x) the set of every best constant approximant to f in the ball B(x, ε). In this paper we extend the operators Tεp to the space Lp−1(Rn)+L∞(Rn), where L0 is the set of every measurable functions finite almost everywhere. Moreover we consider the maximal operators associated to the operators Tεp and we prove maximal inequalities for them. As a consequence of these inequalities we obtain a generalization of Lebesgue's Differentiation Theorem.</description><identifier>ISSN: 0021-9045</identifier><identifier>EISSN: 1096-0430</identifier><identifier>DOI: 10.1006/jath.2001.3559</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>best approximant ; maximal inequalities, a.e. convergence</subject><ispartof>Journal of approximation theory, 2001-06, Vol.110 (2), p.171-179</ispartof><rights>2001 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-8b6ecec36492472618e6ed3adc9b975c1b917f1172cadf62270716615f242da3</citedby><cites>FETCH-LOGICAL-c326t-8b6ecec36492472618e6ed3adc9b975c1b917f1172cadf62270716615f242da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jath.2001.3559$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mazzone, Fernando</creatorcontrib><creatorcontrib>Cuenya, Héctor</creatorcontrib><title>Maximal Inequalities and Lebesgue's Differentiation Theorem for Best Approximant by Constant over Balls</title><title>Journal of approximation theory</title><description>For f∈Lp(Rn), with 1⩽p<∞, ε>0 and x∈Rn we denote by Tε(f)(x) the set of every best constant approximant to f in the ball B(x, ε). In this paper we extend the operators Tεp to the space Lp−1(Rn)+L∞(Rn), where L0 is the set of every measurable functions finite almost everywhere. Moreover we consider the maximal operators associated to the operators Tεp and we prove maximal inequalities for them. As a consequence of these inequalities we obtain a generalization of Lebesgue's Differentiation Theorem.</description><subject>best approximant</subject><subject>maximal inequalities, a.e. convergence</subject><issn>0021-9045</issn><issn>1096-0430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwMntjSvBzYqcZS_mqVMTS3XKc59ZVGhfbrei_JxGsTO8N91xdHULugeXAmHzc6bTNOWOQF0LUF2QCrJYZKwt2SSaMcchqVoprchPjbkiBEDAhmw_97fa6o8sev466c8lhpLpv6QobjJsjPkT67KzFgH1yOjnf0_UWfcA9tT7QJ4yJzg-H4MeePtHmTBe-j2n8_QmHhO66eEuurO4i3v3dKVm_vqwX79nq8225mK8yU3CZslkj0aApZFnzsuISZiixLXRr6qauhIGmhsoCVNzo1krOK1aBlCAsL3mriynJf2tN8DEGtOoQhlnhrICp0ZIaLanRkhotDcDsF8Bh1MlhUNE47A22LqBJqvXuP_QH3WJviA</recordid><startdate>200106</startdate><enddate>200106</enddate><creator>Mazzone, Fernando</creator><creator>Cuenya, Héctor</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200106</creationdate><title>Maximal Inequalities and Lebesgue's Differentiation Theorem for Best Approximant by Constant over Balls</title><author>Mazzone, Fernando ; Cuenya, Héctor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-8b6ecec36492472618e6ed3adc9b975c1b917f1172cadf62270716615f242da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>best approximant</topic><topic>maximal inequalities, a.e. convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazzone, Fernando</creatorcontrib><creatorcontrib>Cuenya, Héctor</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of approximation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazzone, Fernando</au><au>Cuenya, Héctor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximal Inequalities and Lebesgue's Differentiation Theorem for Best Approximant by Constant over Balls</atitle><jtitle>Journal of approximation theory</jtitle><date>2001-06</date><risdate>2001</risdate><volume>110</volume><issue>2</issue><spage>171</spage><epage>179</epage><pages>171-179</pages><issn>0021-9045</issn><eissn>1096-0430</eissn><abstract>For f∈Lp(Rn), with 1⩽p<∞, ε>0 and x∈Rn we denote by Tε(f)(x) the set of every best constant approximant to f in the ball B(x, ε). In this paper we extend the operators Tεp to the space Lp−1(Rn)+L∞(Rn), where L0 is the set of every measurable functions finite almost everywhere. Moreover we consider the maximal operators associated to the operators Tεp and we prove maximal inequalities for them. As a consequence of these inequalities we obtain a generalization of Lebesgue's Differentiation Theorem.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jath.2001.3559</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9045 |
ispartof | Journal of approximation theory, 2001-06, Vol.110 (2), p.171-179 |
issn | 0021-9045 1096-0430 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jath_2001_3559 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | best approximant maximal inequalities, a.e. convergence |
title | Maximal Inequalities and Lebesgue's Differentiation Theorem for Best Approximant by Constant over Balls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximal%20Inequalities%20and%20Lebesgue's%20Differentiation%20Theorem%20for%20Best%20Approximant%20by%20Constant%20over%20Balls&rft.jtitle=Journal%20of%20approximation%20theory&rft.au=Mazzone,%20Fernando&rft.date=2001-06&rft.volume=110&rft.issue=2&rft.spage=171&rft.epage=179&rft.pages=171-179&rft.issn=0021-9045&rft.eissn=1096-0430&rft_id=info:doi/10.1006/jath.2001.3559&rft_dat=%3Celsevier_cross%3ES0021904501935592%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021904501935592&rfr_iscdi=true |