A Korovkin Theorem for Abstract Lebesgue Spaces

Wulbert and Meir have each obtained a Korovkin theorem for weak convergence of operators on an L1 space. Here we prove a result which includes both of these theorems and which provides a general setting for weak Korovkin type L1 convergence of operators which are not assumed positive.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory 2000-01, Vol.102 (1), p.13-20
1. Verfasser: Renaud, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 13
container_title Journal of approximation theory
container_volume 102
creator Renaud, Peter
description Wulbert and Meir have each obtained a Korovkin theorem for weak convergence of operators on an L1 space. Here we prove a result which includes both of these theorems and which provides a general setting for weak Korovkin type L1 convergence of operators which are not assumed positive.
doi_str_mv 10.1006/jath.1999.3377
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jath_1999_3377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021904599933774</els_id><sourcerecordid>S0021904599933774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-92389a780d95c646a4f61df2f67e72c4cfce08ad6569d0648e730f4e7ea596bf3</originalsourceid><addsrcrecordid>eNp1z71OwzAUhmELgUQorMy-gaTHsWPHY1XxUxGJgTJbjnNMXWhd2aESd0-jsjKd6T36HkLuGVQMQM63dtxUTGtdca7UBSkYaFmC4HBJCoCalRpEc01uct4CMNY0rCDzBX2JKR4_w56uNxgT7qiPiS76PCbrRtphj_njG-nbwTrMt-TK26-Md393Rt4fH9bL57J7fVotF13peC3HUte81Va1MOjGSSGt8JINvvZSoaqdcN4htHaQjdQDSNGi4uAFKrSNlr3nM1Kd_7oUc07ozSGFnU0_hoGZuGbimolrJu4paM8BnlYdAyaTXcC9wyEkdKMZYvgv_QX8E1sn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Korovkin Theorem for Abstract Lebesgue Spaces</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Renaud, Peter</creator><creatorcontrib>Renaud, Peter</creatorcontrib><description>Wulbert and Meir have each obtained a Korovkin theorem for weak convergence of operators on an L1 space. Here we prove a result which includes both of these theorems and which provides a general setting for weak Korovkin type L1 convergence of operators which are not assumed positive.</description><identifier>ISSN: 0021-9045</identifier><identifier>EISSN: 1096-0430</identifier><identifier>DOI: 10.1006/jath.1999.3377</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>abstract Lebesgue lattices ; Korovkin ; weak convergence</subject><ispartof>Journal of approximation theory, 2000-01, Vol.102 (1), p.13-20</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-92389a780d95c646a4f61df2f67e72c4cfce08ad6569d0648e730f4e7ea596bf3</citedby><cites>FETCH-LOGICAL-c326t-92389a780d95c646a4f61df2f67e72c4cfce08ad6569d0648e730f4e7ea596bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021904599933774$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Renaud, Peter</creatorcontrib><title>A Korovkin Theorem for Abstract Lebesgue Spaces</title><title>Journal of approximation theory</title><description>Wulbert and Meir have each obtained a Korovkin theorem for weak convergence of operators on an L1 space. Here we prove a result which includes both of these theorems and which provides a general setting for weak Korovkin type L1 convergence of operators which are not assumed positive.</description><subject>abstract Lebesgue lattices</subject><subject>Korovkin</subject><subject>weak convergence</subject><issn>0021-9045</issn><issn>1096-0430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1z71OwzAUhmELgUQorMy-gaTHsWPHY1XxUxGJgTJbjnNMXWhd2aESd0-jsjKd6T36HkLuGVQMQM63dtxUTGtdca7UBSkYaFmC4HBJCoCalRpEc01uct4CMNY0rCDzBX2JKR4_w56uNxgT7qiPiS76PCbrRtphj_njG-nbwTrMt-TK26-Md393Rt4fH9bL57J7fVotF13peC3HUte81Va1MOjGSSGt8JINvvZSoaqdcN4htHaQjdQDSNGi4uAFKrSNlr3nM1Kd_7oUc07ozSGFnU0_hoGZuGbimolrJu4paM8BnlYdAyaTXcC9wyEkdKMZYvgv_QX8E1sn</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Renaud, Peter</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200001</creationdate><title>A Korovkin Theorem for Abstract Lebesgue Spaces</title><author>Renaud, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-92389a780d95c646a4f61df2f67e72c4cfce08ad6569d0648e730f4e7ea596bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>abstract Lebesgue lattices</topic><topic>Korovkin</topic><topic>weak convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renaud, Peter</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of approximation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renaud, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Korovkin Theorem for Abstract Lebesgue Spaces</atitle><jtitle>Journal of approximation theory</jtitle><date>2000-01</date><risdate>2000</risdate><volume>102</volume><issue>1</issue><spage>13</spage><epage>20</epage><pages>13-20</pages><issn>0021-9045</issn><eissn>1096-0430</eissn><abstract>Wulbert and Meir have each obtained a Korovkin theorem for weak convergence of operators on an L1 space. Here we prove a result which includes both of these theorems and which provides a general setting for weak Korovkin type L1 convergence of operators which are not assumed positive.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jath.1999.3377</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9045
ispartof Journal of approximation theory, 2000-01, Vol.102 (1), p.13-20
issn 0021-9045
1096-0430
language eng
recordid cdi_crossref_primary_10_1006_jath_1999_3377
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects abstract Lebesgue lattices
Korovkin
weak convergence
title A Korovkin Theorem for Abstract Lebesgue Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Korovkin%20Theorem%20for%20Abstract%20Lebesgue%20Spaces&rft.jtitle=Journal%20of%20approximation%20theory&rft.au=Renaud,%20Peter&rft.date=2000-01&rft.volume=102&rft.issue=1&rft.spage=13&rft.epage=20&rft.pages=13-20&rft.issn=0021-9045&rft.eissn=1096-0430&rft_id=info:doi/10.1006/jath.1999.3377&rft_dat=%3Celsevier_cross%3ES0021904599933774%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021904599933774&rfr_iscdi=true