Stability and Independence for Multivariate Refinable Distributions

Due to their so-called time-frequency localization properties, wavelets have become a powerful tool in signal analysis and image processing. Typical constructions of wavelets depend on the stability of the shifts of an underlying refinable function. In this paper, we derive necessary and sufficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory 1999-06, Vol.98 (2), p.248-270
1. Verfasser: Hogan, Thomas A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue 2
container_start_page 248
container_title Journal of approximation theory
container_volume 98
creator Hogan, Thomas A.
description Due to their so-called time-frequency localization properties, wavelets have become a powerful tool in signal analysis and image processing. Typical constructions of wavelets depend on the stability of the shifts of an underlying refinable function. In this paper, we derive necessary and sufficient conditions for the stability of the shifts of certain compactly supported refinable functions. These conditions are in terms of the zeros of the refinement mask. Our results are actually applicable to more general distributions which are not of function type, if we generalize the notion of stability appropriately. We also provide a similar characterization of the (global) linear independence of the shifts. We present several examples illustrating our results, as well as one example in which known results on box splines are derived using the theorems of this paper.
doi_str_mv 10.1006/jath.1998.3255
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jath_1998_3255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021904598932555</els_id><sourcerecordid>S0021904598932555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-2ee5bfa51f3c08b7c3a08e9d4ed5a1f489dc18aa263ea91855cb4efc0182e2833</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWwZZ0fSJix4-AsUXm0UhESj7Xl2GPhKiSV7Vbq39OobNnMXZ2rO4exW4QKAZq7jcnfFbatqgSX8ozNENqmhFrAOZsBcCxbqOUlu0ppA4AoJc7Y4iObLvQhHwozuGI1ONrS8QyWCj_G4nXX57A3MZhMxTv5MJiup-IxpBxDt8thHNI1u_CmT3Tzl3P29fz0uViW67eX1eJhXVrBm1xyItl5I9ELC6q7t8KAotbV5KRBX6vWWVTG8EaQaVFJabuavAVUnLgSYs6qU6-NY0qRvN7G8GPiQSPoSYGeFOhJgZ4UHAF1Aui4ah8o6mTD9JoLkWzWbgz_ob8rwWQv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability and Independence for Multivariate Refinable Distributions</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hogan, Thomas A.</creator><creatorcontrib>Hogan, Thomas A.</creatorcontrib><description>Due to their so-called time-frequency localization properties, wavelets have become a powerful tool in signal analysis and image processing. Typical constructions of wavelets depend on the stability of the shifts of an underlying refinable function. In this paper, we derive necessary and sufficient conditions for the stability of the shifts of certain compactly supported refinable functions. These conditions are in terms of the zeros of the refinement mask. Our results are actually applicable to more general distributions which are not of function type, if we generalize the notion of stability appropriately. We also provide a similar characterization of the (global) linear independence of the shifts. We present several examples illustrating our results, as well as one example in which known results on box splines are derived using the theorems of this paper.</description><identifier>ISSN: 0021-9045</identifier><identifier>EISSN: 1096-0430</identifier><identifier>DOI: 10.1006/jath.1998.3255</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of approximation theory, 1999-06, Vol.98 (2), p.248-270</ispartof><rights>1999 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-2ee5bfa51f3c08b7c3a08e9d4ed5a1f489dc18aa263ea91855cb4efc0182e2833</citedby><cites>FETCH-LOGICAL-c326t-2ee5bfa51f3c08b7c3a08e9d4ed5a1f489dc18aa263ea91855cb4efc0182e2833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021904598932555$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hogan, Thomas A.</creatorcontrib><title>Stability and Independence for Multivariate Refinable Distributions</title><title>Journal of approximation theory</title><description>Due to their so-called time-frequency localization properties, wavelets have become a powerful tool in signal analysis and image processing. Typical constructions of wavelets depend on the stability of the shifts of an underlying refinable function. In this paper, we derive necessary and sufficient conditions for the stability of the shifts of certain compactly supported refinable functions. These conditions are in terms of the zeros of the refinement mask. Our results are actually applicable to more general distributions which are not of function type, if we generalize the notion of stability appropriately. We also provide a similar characterization of the (global) linear independence of the shifts. We present several examples illustrating our results, as well as one example in which known results on box splines are derived using the theorems of this paper.</description><issn>0021-9045</issn><issn>1096-0430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWwZZ0fSJix4-AsUXm0UhESj7Xl2GPhKiSV7Vbq39OobNnMXZ2rO4exW4QKAZq7jcnfFbatqgSX8ozNENqmhFrAOZsBcCxbqOUlu0ppA4AoJc7Y4iObLvQhHwozuGI1ONrS8QyWCj_G4nXX57A3MZhMxTv5MJiup-IxpBxDt8thHNI1u_CmT3Tzl3P29fz0uViW67eX1eJhXVrBm1xyItl5I9ELC6q7t8KAotbV5KRBX6vWWVTG8EaQaVFJabuavAVUnLgSYs6qU6-NY0qRvN7G8GPiQSPoSYGeFOhJgZ4UHAF1Aui4ah8o6mTD9JoLkWzWbgz_ob8rwWQv</recordid><startdate>199906</startdate><enddate>199906</enddate><creator>Hogan, Thomas A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199906</creationdate><title>Stability and Independence for Multivariate Refinable Distributions</title><author>Hogan, Thomas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-2ee5bfa51f3c08b7c3a08e9d4ed5a1f489dc18aa263ea91855cb4efc0182e2833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hogan, Thomas A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of approximation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hogan, Thomas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and Independence for Multivariate Refinable Distributions</atitle><jtitle>Journal of approximation theory</jtitle><date>1999-06</date><risdate>1999</risdate><volume>98</volume><issue>2</issue><spage>248</spage><epage>270</epage><pages>248-270</pages><issn>0021-9045</issn><eissn>1096-0430</eissn><abstract>Due to their so-called time-frequency localization properties, wavelets have become a powerful tool in signal analysis and image processing. Typical constructions of wavelets depend on the stability of the shifts of an underlying refinable function. In this paper, we derive necessary and sufficient conditions for the stability of the shifts of certain compactly supported refinable functions. These conditions are in terms of the zeros of the refinement mask. Our results are actually applicable to more general distributions which are not of function type, if we generalize the notion of stability appropriately. We also provide a similar characterization of the (global) linear independence of the shifts. We present several examples illustrating our results, as well as one example in which known results on box splines are derived using the theorems of this paper.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jath.1998.3255</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9045
ispartof Journal of approximation theory, 1999-06, Vol.98 (2), p.248-270
issn 0021-9045
1096-0430
language eng
recordid cdi_crossref_primary_10_1006_jath_1998_3255
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
title Stability and Independence for Multivariate Refinable Distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20Independence%20for%20Multivariate%20Refinable%20Distributions&rft.jtitle=Journal%20of%20approximation%20theory&rft.au=Hogan,%20Thomas%20A.&rft.date=1999-06&rft.volume=98&rft.issue=2&rft.spage=248&rft.epage=270&rft.pages=248-270&rft.issn=0021-9045&rft.eissn=1096-0430&rft_id=info:doi/10.1006/jath.1998.3255&rft_dat=%3Celsevier_cross%3ES0021904598932555%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021904598932555&rfr_iscdi=true