Stability and Independence for Multivariate Refinable Distributions
Due to their so-called time-frequency localization properties, wavelets have become a powerful tool in signal analysis and image processing. Typical constructions of wavelets depend on the stability of the shifts of an underlying refinable function. In this paper, we derive necessary and sufficient...
Gespeichert in:
Veröffentlicht in: | Journal of approximation theory 1999-06, Vol.98 (2), p.248-270 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 270 |
---|---|
container_issue | 2 |
container_start_page | 248 |
container_title | Journal of approximation theory |
container_volume | 98 |
creator | Hogan, Thomas A. |
description | Due to their so-called time-frequency localization properties, wavelets have become a powerful tool in signal analysis and image processing. Typical constructions of wavelets depend on the stability of the shifts of an underlying refinable function. In this paper, we derive necessary and sufficient conditions for the stability of the shifts of certain compactly supported refinable functions. These conditions are in terms of the zeros of the refinement mask. Our results are actually applicable to more general distributions which are not of function type, if we generalize the notion of stability appropriately. We also provide a similar characterization of the (global) linear independence of the shifts. We present several examples illustrating our results, as well as one example in which known results on box splines are derived using the theorems of this paper. |
doi_str_mv | 10.1006/jath.1998.3255 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jath_1998_3255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021904598932555</els_id><sourcerecordid>S0021904598932555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-2ee5bfa51f3c08b7c3a08e9d4ed5a1f489dc18aa263ea91855cb4efc0182e2833</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWwZZ0fSJix4-AsUXm0UhESj7Xl2GPhKiSV7Vbq39OobNnMXZ2rO4exW4QKAZq7jcnfFbatqgSX8ozNENqmhFrAOZsBcCxbqOUlu0ppA4AoJc7Y4iObLvQhHwozuGI1ONrS8QyWCj_G4nXX57A3MZhMxTv5MJiup-IxpBxDt8thHNI1u_CmT3Tzl3P29fz0uViW67eX1eJhXVrBm1xyItl5I9ELC6q7t8KAotbV5KRBX6vWWVTG8EaQaVFJabuavAVUnLgSYs6qU6-NY0qRvN7G8GPiQSPoSYGeFOhJgZ4UHAF1Aui4ah8o6mTD9JoLkWzWbgz_ob8rwWQv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability and Independence for Multivariate Refinable Distributions</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hogan, Thomas A.</creator><creatorcontrib>Hogan, Thomas A.</creatorcontrib><description>Due to their so-called time-frequency localization properties, wavelets have become a powerful tool in signal analysis and image processing. Typical constructions of wavelets depend on the stability of the shifts of an underlying refinable function. In this paper, we derive necessary and sufficient conditions for the stability of the shifts of certain compactly supported refinable functions. These conditions are in terms of the zeros of the refinement mask. Our results are actually applicable to more general distributions which are not of function type, if we generalize the notion of stability appropriately. We also provide a similar characterization of the (global) linear independence of the shifts. We present several examples illustrating our results, as well as one example in which known results on box splines are derived using the theorems of this paper.</description><identifier>ISSN: 0021-9045</identifier><identifier>EISSN: 1096-0430</identifier><identifier>DOI: 10.1006/jath.1998.3255</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of approximation theory, 1999-06, Vol.98 (2), p.248-270</ispartof><rights>1999 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-2ee5bfa51f3c08b7c3a08e9d4ed5a1f489dc18aa263ea91855cb4efc0182e2833</citedby><cites>FETCH-LOGICAL-c326t-2ee5bfa51f3c08b7c3a08e9d4ed5a1f489dc18aa263ea91855cb4efc0182e2833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021904598932555$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hogan, Thomas A.</creatorcontrib><title>Stability and Independence for Multivariate Refinable Distributions</title><title>Journal of approximation theory</title><description>Due to their so-called time-frequency localization properties, wavelets have become a powerful tool in signal analysis and image processing. Typical constructions of wavelets depend on the stability of the shifts of an underlying refinable function. In this paper, we derive necessary and sufficient conditions for the stability of the shifts of certain compactly supported refinable functions. These conditions are in terms of the zeros of the refinement mask. Our results are actually applicable to more general distributions which are not of function type, if we generalize the notion of stability appropriately. We also provide a similar characterization of the (global) linear independence of the shifts. We present several examples illustrating our results, as well as one example in which known results on box splines are derived using the theorems of this paper.</description><issn>0021-9045</issn><issn>1096-0430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWwZZ0fSJix4-AsUXm0UhESj7Xl2GPhKiSV7Vbq39OobNnMXZ2rO4exW4QKAZq7jcnfFbatqgSX8ozNENqmhFrAOZsBcCxbqOUlu0ppA4AoJc7Y4iObLvQhHwozuGI1ONrS8QyWCj_G4nXX57A3MZhMxTv5MJiup-IxpBxDt8thHNI1u_CmT3Tzl3P29fz0uViW67eX1eJhXVrBm1xyItl5I9ELC6q7t8KAotbV5KRBX6vWWVTG8EaQaVFJabuavAVUnLgSYs6qU6-NY0qRvN7G8GPiQSPoSYGeFOhJgZ4UHAF1Aui4ah8o6mTD9JoLkWzWbgz_ob8rwWQv</recordid><startdate>199906</startdate><enddate>199906</enddate><creator>Hogan, Thomas A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199906</creationdate><title>Stability and Independence for Multivariate Refinable Distributions</title><author>Hogan, Thomas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-2ee5bfa51f3c08b7c3a08e9d4ed5a1f489dc18aa263ea91855cb4efc0182e2833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hogan, Thomas A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of approximation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hogan, Thomas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and Independence for Multivariate Refinable Distributions</atitle><jtitle>Journal of approximation theory</jtitle><date>1999-06</date><risdate>1999</risdate><volume>98</volume><issue>2</issue><spage>248</spage><epage>270</epage><pages>248-270</pages><issn>0021-9045</issn><eissn>1096-0430</eissn><abstract>Due to their so-called time-frequency localization properties, wavelets have become a powerful tool in signal analysis and image processing. Typical constructions of wavelets depend on the stability of the shifts of an underlying refinable function. In this paper, we derive necessary and sufficient conditions for the stability of the shifts of certain compactly supported refinable functions. These conditions are in terms of the zeros of the refinement mask. Our results are actually applicable to more general distributions which are not of function type, if we generalize the notion of stability appropriately. We also provide a similar characterization of the (global) linear independence of the shifts. We present several examples illustrating our results, as well as one example in which known results on box splines are derived using the theorems of this paper.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jath.1998.3255</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9045 |
ispartof | Journal of approximation theory, 1999-06, Vol.98 (2), p.248-270 |
issn | 0021-9045 1096-0430 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jath_1998_3255 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
title | Stability and Independence for Multivariate Refinable Distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20Independence%20for%20Multivariate%20Refinable%20Distributions&rft.jtitle=Journal%20of%20approximation%20theory&rft.au=Hogan,%20Thomas%20A.&rft.date=1999-06&rft.volume=98&rft.issue=2&rft.spage=248&rft.epage=270&rft.pages=248-270&rft.issn=0021-9045&rft.eissn=1096-0430&rft_id=info:doi/10.1006/jath.1998.3255&rft_dat=%3Celsevier_cross%3ES0021904598932555%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021904598932555&rfr_iscdi=true |