Tools for Multicoloring with Applications to Planar Graphs and Partial k-Trees

We study graph multicoloring problems, motivated by the scheduling of dependent jobs on multiple machines. In multicoloring problems, vertices have lengths which determine the number of colors they must receive, and the desired coloring can be either contiguous (nonpreemptive schedule) or arbitrary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algorithms 2002-02, Vol.42 (2), p.334-366
Hauptverfasser: Halldórsson, Magnús M., Kortsarz, Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue 2
container_start_page 334
container_title Journal of algorithms
container_volume 42
creator Halldórsson, Magnús M.
Kortsarz, Guy
description We study graph multicoloring problems, motivated by the scheduling of dependent jobs on multiple machines. In multicoloring problems, vertices have lengths which determine the number of colors they must receive, and the desired coloring can be either contiguous (nonpreemptive schedule) or arbitrary (preemptive schedule). We consider both the sum-of-completion times measure, or the sum of the last color assigned to each vertex, as well as the more common makespan measure, or the number of colors used. In this paper, we study two fundamental classes of graphs: planar graphs and partial k-trees. For both classes, we give a polynomial time approximation scheme (PTAS) for the multicoloring sum, for both the preemptive and nonpreemptive cases. On the other hand, we show the problem to be strongly NP-hard on planar graphs, even in the unweighted case, known as the sum coloring problem. For a nonpreemptive multicoloring sum of partial k-trees, we obtain a fully polynomial time approximation scheme. This is based on a pseudo-polynomial time algorithm that holds for a general class of cost functions. Finally, we give a PTAS for the makespan of a preemptive multicoloring of partial k-trees that uses only O(logn) preemptions. These results are based on several properties of multicolorings and tools for manipulating them, which may be of more general applicability.
doi_str_mv 10.1006/jagm.2001.1210
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jagm_2001_1210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196677401912106</els_id><sourcerecordid>S0196677401912106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-63204dc5c6c50e933ce01e90355b195553201ab0caa47dfe55e6e84ebedc105a3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRi0EEqWwMnthTLDj2EnGqoKCVKBDma2rc2ld3DiyA4h_T0KRmJhuuO99d3qEXHOWcsbU7R62hzRjjKc84-yETDirWJKpojwlE8YrlaiiyM_JRYz7IcVlXk3I89p7F2njA316d7013vlg2y39tP2OzrrOWQO99W2kvacrBy0EugjQ7SKFtqYrCL0FR9-SdUCMl-SsARfx6ndOyev93Xr-kCxfFo_z2TIxgqs-USJjeW2kUUYyrIQwyDhWTEi54ZWUcthz2DADkBd1g1KiwjLHDdaGMwliStJjrwk-xoCN7oI9QPjSnOnRhh5t6NGGHm0MwM0R6CAacE2A1tj4RwlViPInVx5zOHz_YTHoaCy2Bmsb0PS69va_E9_4gnMn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tools for Multicoloring with Applications to Planar Graphs and Partial k-Trees</title><source>Alma/SFX Local Collection</source><creator>Halldórsson, Magnús M. ; Kortsarz, Guy</creator><creatorcontrib>Halldórsson, Magnús M. ; Kortsarz, Guy</creatorcontrib><description>We study graph multicoloring problems, motivated by the scheduling of dependent jobs on multiple machines. In multicoloring problems, vertices have lengths which determine the number of colors they must receive, and the desired coloring can be either contiguous (nonpreemptive schedule) or arbitrary (preemptive schedule). We consider both the sum-of-completion times measure, or the sum of the last color assigned to each vertex, as well as the more common makespan measure, or the number of colors used. In this paper, we study two fundamental classes of graphs: planar graphs and partial k-trees. For both classes, we give a polynomial time approximation scheme (PTAS) for the multicoloring sum, for both the preemptive and nonpreemptive cases. On the other hand, we show the problem to be strongly NP-hard on planar graphs, even in the unweighted case, known as the sum coloring problem. For a nonpreemptive multicoloring sum of partial k-trees, we obtain a fully polynomial time approximation scheme. This is based on a pseudo-polynomial time algorithm that holds for a general class of cost functions. Finally, we give a PTAS for the makespan of a preemptive multicoloring of partial k-trees that uses only O(logn) preemptions. These results are based on several properties of multicolorings and tools for manipulating them, which may be of more general applicability.</description><identifier>ISSN: 0196-6774</identifier><identifier>EISSN: 1090-2678</identifier><identifier>DOI: 10.1006/jagm.2001.1210</identifier><identifier>CODEN: JOALDV</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Combinatorics ; Combinatorics. Ordered structures ; Exact sciences and technology ; Graph theory ; Mathematics ; Sciences and techniques of general use</subject><ispartof>Journal of algorithms, 2002-02, Vol.42 (2), p.334-366</ispartof><rights>2002 Elsevier Science (USA)</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-63204dc5c6c50e933ce01e90355b195553201ab0caa47dfe55e6e84ebedc105a3</citedby><cites>FETCH-LOGICAL-c316t-63204dc5c6c50e933ce01e90355b195553201ab0caa47dfe55e6e84ebedc105a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13673810$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Halldórsson, Magnús M.</creatorcontrib><creatorcontrib>Kortsarz, Guy</creatorcontrib><title>Tools for Multicoloring with Applications to Planar Graphs and Partial k-Trees</title><title>Journal of algorithms</title><description>We study graph multicoloring problems, motivated by the scheduling of dependent jobs on multiple machines. In multicoloring problems, vertices have lengths which determine the number of colors they must receive, and the desired coloring can be either contiguous (nonpreemptive schedule) or arbitrary (preemptive schedule). We consider both the sum-of-completion times measure, or the sum of the last color assigned to each vertex, as well as the more common makespan measure, or the number of colors used. In this paper, we study two fundamental classes of graphs: planar graphs and partial k-trees. For both classes, we give a polynomial time approximation scheme (PTAS) for the multicoloring sum, for both the preemptive and nonpreemptive cases. On the other hand, we show the problem to be strongly NP-hard on planar graphs, even in the unweighted case, known as the sum coloring problem. For a nonpreemptive multicoloring sum of partial k-trees, we obtain a fully polynomial time approximation scheme. This is based on a pseudo-polynomial time algorithm that holds for a general class of cost functions. Finally, we give a PTAS for the makespan of a preemptive multicoloring of partial k-trees that uses only O(logn) preemptions. These results are based on several properties of multicolorings and tools for manipulating them, which may be of more general applicability.</description><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><issn>0196-6774</issn><issn>1090-2678</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQRi0EEqWwMnthTLDj2EnGqoKCVKBDma2rc2ld3DiyA4h_T0KRmJhuuO99d3qEXHOWcsbU7R62hzRjjKc84-yETDirWJKpojwlE8YrlaiiyM_JRYz7IcVlXk3I89p7F2njA316d7013vlg2y39tP2OzrrOWQO99W2kvacrBy0EugjQ7SKFtqYrCL0FR9-SdUCMl-SsARfx6ndOyev93Xr-kCxfFo_z2TIxgqs-USJjeW2kUUYyrIQwyDhWTEi54ZWUcthz2DADkBd1g1KiwjLHDdaGMwliStJjrwk-xoCN7oI9QPjSnOnRhh5t6NGGHm0MwM0R6CAacE2A1tj4RwlViPInVx5zOHz_YTHoaCy2Bmsb0PS69va_E9_4gnMn</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Halldórsson, Magnús M.</creator><creator>Kortsarz, Guy</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020201</creationdate><title>Tools for Multicoloring with Applications to Planar Graphs and Partial k-Trees</title><author>Halldórsson, Magnús M. ; Kortsarz, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-63204dc5c6c50e933ce01e90355b195553201ab0caa47dfe55e6e84ebedc105a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halldórsson, Magnús M.</creatorcontrib><creatorcontrib>Kortsarz, Guy</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halldórsson, Magnús M.</au><au>Kortsarz, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tools for Multicoloring with Applications to Planar Graphs and Partial k-Trees</atitle><jtitle>Journal of algorithms</jtitle><date>2002-02-01</date><risdate>2002</risdate><volume>42</volume><issue>2</issue><spage>334</spage><epage>366</epage><pages>334-366</pages><issn>0196-6774</issn><eissn>1090-2678</eissn><coden>JOALDV</coden><abstract>We study graph multicoloring problems, motivated by the scheduling of dependent jobs on multiple machines. In multicoloring problems, vertices have lengths which determine the number of colors they must receive, and the desired coloring can be either contiguous (nonpreemptive schedule) or arbitrary (preemptive schedule). We consider both the sum-of-completion times measure, or the sum of the last color assigned to each vertex, as well as the more common makespan measure, or the number of colors used. In this paper, we study two fundamental classes of graphs: planar graphs and partial k-trees. For both classes, we give a polynomial time approximation scheme (PTAS) for the multicoloring sum, for both the preemptive and nonpreemptive cases. On the other hand, we show the problem to be strongly NP-hard on planar graphs, even in the unweighted case, known as the sum coloring problem. For a nonpreemptive multicoloring sum of partial k-trees, we obtain a fully polynomial time approximation scheme. This is based on a pseudo-polynomial time algorithm that holds for a general class of cost functions. Finally, we give a PTAS for the makespan of a preemptive multicoloring of partial k-trees that uses only O(logn) preemptions. These results are based on several properties of multicolorings and tools for manipulating them, which may be of more general applicability.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jagm.2001.1210</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-6774
ispartof Journal of algorithms, 2002-02, Vol.42 (2), p.334-366
issn 0196-6774
1090-2678
language eng
recordid cdi_crossref_primary_10_1006_jagm_2001_1210
source Alma/SFX Local Collection
subjects Combinatorics
Combinatorics. Ordered structures
Exact sciences and technology
Graph theory
Mathematics
Sciences and techniques of general use
title Tools for Multicoloring with Applications to Planar Graphs and Partial k-Trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tools%20for%20Multicoloring%20with%20Applications%20to%20Planar%20Graphs%20and%20Partial%20k-Trees&rft.jtitle=Journal%20of%20algorithms&rft.au=Halld%C3%B3rsson,%20Magn%C3%BAs%20M.&rft.date=2002-02-01&rft.volume=42&rft.issue=2&rft.spage=334&rft.epage=366&rft.pages=334-366&rft.issn=0196-6774&rft.eissn=1090-2678&rft.coden=JOALDV&rft_id=info:doi/10.1006/jagm.2001.1210&rft_dat=%3Celsevier_cross%3ES0196677401912106%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0196677401912106&rfr_iscdi=true