Efficient Approximation Algorithms for Tiling and Packing Problems with Rectangles
We provide improved approximation algorithms for several rectangle tiling and packing problems (RTILE, DRTILE, and d-RPACK) studied in the literature. Most of our algorithms are highly efficient since their running times are near-linear in the sparse input size rather than in the domain size. In add...
Gespeichert in:
Veröffentlicht in: | Journal of algorithms 2001-11, Vol.41 (2), p.443-470 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 470 |
---|---|
container_issue | 2 |
container_start_page | 443 |
container_title | Journal of algorithms |
container_volume | 41 |
creator | Berman, Piotr DasGupta, Bhaskar Muthukrishnan, S Ramaswami, Suneeta |
description | We provide improved approximation algorithms for several rectangle tiling and packing problems (RTILE, DRTILE, and d-RPACK) studied in the literature. Most of our algorithms are highly efficient since their running times are near-linear in the sparse input size rather than in the domain size. In addition, we improve the best known approximation ratios. |
doi_str_mv | 10.1006/jagm.2001.1188 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jagm_2001_1188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196677401911885</els_id><sourcerecordid>S0196677401911885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2404a1afe0453b59783c4b6c7e61d690a66481c4c18b7b2916c291cfc51731433</originalsourceid><addsrcrecordid>eNp1kLtrwzAQxkVpoWnatbOXjk51lizZYwjpAwINIZ2FfJZcpY5tJNPHf1-ZFDp1uTu477vHj5BboAugVNwfdHNcZJTCAqAozsgMaEnTTMjinMwolCIVUvJLchXCIaog5-WM7NbWOnSmG5PlMPj-yx316PouWbZN7934dgyJ7X2yd63rmkR3dbLV-D7VW99XrYn9zyhLdgZH3TWtCdfkwuo2mJvfPCevD-v96indvDw-r5abFBmIMc045Rq0NZTnrMpLWTDklUBpBNSipFoIXgByhKKSVVaCwBjQYg6SAWdsThanuej7ELyxavDxev-tgKqJiJqIqImImohEw93JMOiAurVed-jCn4uxUjI56YqTzsTrP5zxKkyE0NTOxy9V3bv_VvwAEnl0SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient Approximation Algorithms for Tiling and Packing Problems with Rectangles</title><source>Alma/SFX Local Collection</source><creator>Berman, Piotr ; DasGupta, Bhaskar ; Muthukrishnan, S ; Ramaswami, Suneeta</creator><creatorcontrib>Berman, Piotr ; DasGupta, Bhaskar ; Muthukrishnan, S ; Ramaswami, Suneeta</creatorcontrib><description>We provide improved approximation algorithms for several rectangle tiling and packing problems (RTILE, DRTILE, and d-RPACK) studied in the literature. Most of our algorithms are highly efficient since their running times are near-linear in the sparse input size rather than in the domain size. In addition, we improve the best known approximation ratios.</description><identifier>ISSN: 0196-6774</identifier><identifier>EISSN: 1090-2678</identifier><identifier>DOI: 10.1006/jagm.2001.1188</identifier><identifier>CODEN: JOALDV</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Combinatorics ; Combinatorics. Ordered structures ; Convex and discrete geometry ; Designs and configurations ; Exact sciences and technology ; Geometry ; Mathematics ; Sciences and techniques of general use</subject><ispartof>Journal of algorithms, 2001-11, Vol.41 (2), p.443-470</ispartof><rights>2001 Elsevier Science (USA)</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2404a1afe0453b59783c4b6c7e61d690a66481c4c18b7b2916c291cfc51731433</citedby><cites>FETCH-LOGICAL-c316t-2404a1afe0453b59783c4b6c7e61d690a66481c4c18b7b2916c291cfc51731433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13397378$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Berman, Piotr</creatorcontrib><creatorcontrib>DasGupta, Bhaskar</creatorcontrib><creatorcontrib>Muthukrishnan, S</creatorcontrib><creatorcontrib>Ramaswami, Suneeta</creatorcontrib><title>Efficient Approximation Algorithms for Tiling and Packing Problems with Rectangles</title><title>Journal of algorithms</title><description>We provide improved approximation algorithms for several rectangle tiling and packing problems (RTILE, DRTILE, and d-RPACK) studied in the literature. Most of our algorithms are highly efficient since their running times are near-linear in the sparse input size rather than in the domain size. In addition, we improve the best known approximation ratios.</description><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Convex and discrete geometry</subject><subject>Designs and configurations</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><issn>0196-6774</issn><issn>1090-2678</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kLtrwzAQxkVpoWnatbOXjk51lizZYwjpAwINIZ2FfJZcpY5tJNPHf1-ZFDp1uTu477vHj5BboAugVNwfdHNcZJTCAqAozsgMaEnTTMjinMwolCIVUvJLchXCIaog5-WM7NbWOnSmG5PlMPj-yx316PouWbZN7934dgyJ7X2yd63rmkR3dbLV-D7VW99XrYn9zyhLdgZH3TWtCdfkwuo2mJvfPCevD-v96indvDw-r5abFBmIMc045Rq0NZTnrMpLWTDklUBpBNSipFoIXgByhKKSVVaCwBjQYg6SAWdsThanuej7ELyxavDxev-tgKqJiJqIqImImohEw93JMOiAurVed-jCn4uxUjI56YqTzsTrP5zxKkyE0NTOxy9V3bv_VvwAEnl0SQ</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Berman, Piotr</creator><creator>DasGupta, Bhaskar</creator><creator>Muthukrishnan, S</creator><creator>Ramaswami, Suneeta</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20011101</creationdate><title>Efficient Approximation Algorithms for Tiling and Packing Problems with Rectangles</title><author>Berman, Piotr ; DasGupta, Bhaskar ; Muthukrishnan, S ; Ramaswami, Suneeta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2404a1afe0453b59783c4b6c7e61d690a66481c4c18b7b2916c291cfc51731433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Convex and discrete geometry</topic><topic>Designs and configurations</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berman, Piotr</creatorcontrib><creatorcontrib>DasGupta, Bhaskar</creatorcontrib><creatorcontrib>Muthukrishnan, S</creatorcontrib><creatorcontrib>Ramaswami, Suneeta</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berman, Piotr</au><au>DasGupta, Bhaskar</au><au>Muthukrishnan, S</au><au>Ramaswami, Suneeta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Approximation Algorithms for Tiling and Packing Problems with Rectangles</atitle><jtitle>Journal of algorithms</jtitle><date>2001-11-01</date><risdate>2001</risdate><volume>41</volume><issue>2</issue><spage>443</spage><epage>470</epage><pages>443-470</pages><issn>0196-6774</issn><eissn>1090-2678</eissn><coden>JOALDV</coden><abstract>We provide improved approximation algorithms for several rectangle tiling and packing problems (RTILE, DRTILE, and d-RPACK) studied in the literature. Most of our algorithms are highly efficient since their running times are near-linear in the sparse input size rather than in the domain size. In addition, we improve the best known approximation ratios.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jagm.2001.1188</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-6774 |
ispartof | Journal of algorithms, 2001-11, Vol.41 (2), p.443-470 |
issn | 0196-6774 1090-2678 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jagm_2001_1188 |
source | Alma/SFX Local Collection |
subjects | Combinatorics Combinatorics. Ordered structures Convex and discrete geometry Designs and configurations Exact sciences and technology Geometry Mathematics Sciences and techniques of general use |
title | Efficient Approximation Algorithms for Tiling and Packing Problems with Rectangles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Approximation%20Algorithms%20for%20Tiling%20and%20Packing%20Problems%20with%20Rectangles&rft.jtitle=Journal%20of%20algorithms&rft.au=Berman,%20Piotr&rft.date=2001-11-01&rft.volume=41&rft.issue=2&rft.spage=443&rft.epage=470&rft.pages=443-470&rft.issn=0196-6774&rft.eissn=1090-2678&rft.coden=JOALDV&rft_id=info:doi/10.1006/jagm.2001.1188&rft_dat=%3Celsevier_cross%3ES0196677401911885%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0196677401911885&rfr_iscdi=true |