Efficient Approximation Algorithms for Tiling and Packing Problems with Rectangles

We provide improved approximation algorithms for several rectangle tiling and packing problems (RTILE, DRTILE, and d-RPACK) studied in the literature. Most of our algorithms are highly efficient since their running times are near-linear in the sparse input size rather than in the domain size. In add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algorithms 2001-11, Vol.41 (2), p.443-470
Hauptverfasser: Berman, Piotr, DasGupta, Bhaskar, Muthukrishnan, S, Ramaswami, Suneeta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue 2
container_start_page 443
container_title Journal of algorithms
container_volume 41
creator Berman, Piotr
DasGupta, Bhaskar
Muthukrishnan, S
Ramaswami, Suneeta
description We provide improved approximation algorithms for several rectangle tiling and packing problems (RTILE, DRTILE, and d-RPACK) studied in the literature. Most of our algorithms are highly efficient since their running times are near-linear in the sparse input size rather than in the domain size. In addition, we improve the best known approximation ratios.
doi_str_mv 10.1006/jagm.2001.1188
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jagm_2001_1188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196677401911885</els_id><sourcerecordid>S0196677401911885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2404a1afe0453b59783c4b6c7e61d690a66481c4c18b7b2916c291cfc51731433</originalsourceid><addsrcrecordid>eNp1kLtrwzAQxkVpoWnatbOXjk51lizZYwjpAwINIZ2FfJZcpY5tJNPHf1-ZFDp1uTu477vHj5BboAugVNwfdHNcZJTCAqAozsgMaEnTTMjinMwolCIVUvJLchXCIaog5-WM7NbWOnSmG5PlMPj-yx316PouWbZN7934dgyJ7X2yd63rmkR3dbLV-D7VW99XrYn9zyhLdgZH3TWtCdfkwuo2mJvfPCevD-v96indvDw-r5abFBmIMc045Rq0NZTnrMpLWTDklUBpBNSipFoIXgByhKKSVVaCwBjQYg6SAWdsThanuej7ELyxavDxev-tgKqJiJqIqImImohEw93JMOiAurVed-jCn4uxUjI56YqTzsTrP5zxKkyE0NTOxy9V3bv_VvwAEnl0SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient Approximation Algorithms for Tiling and Packing Problems with Rectangles</title><source>Alma/SFX Local Collection</source><creator>Berman, Piotr ; DasGupta, Bhaskar ; Muthukrishnan, S ; Ramaswami, Suneeta</creator><creatorcontrib>Berman, Piotr ; DasGupta, Bhaskar ; Muthukrishnan, S ; Ramaswami, Suneeta</creatorcontrib><description>We provide improved approximation algorithms for several rectangle tiling and packing problems (RTILE, DRTILE, and d-RPACK) studied in the literature. Most of our algorithms are highly efficient since their running times are near-linear in the sparse input size rather than in the domain size. In addition, we improve the best known approximation ratios.</description><identifier>ISSN: 0196-6774</identifier><identifier>EISSN: 1090-2678</identifier><identifier>DOI: 10.1006/jagm.2001.1188</identifier><identifier>CODEN: JOALDV</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Combinatorics ; Combinatorics. Ordered structures ; Convex and discrete geometry ; Designs and configurations ; Exact sciences and technology ; Geometry ; Mathematics ; Sciences and techniques of general use</subject><ispartof>Journal of algorithms, 2001-11, Vol.41 (2), p.443-470</ispartof><rights>2001 Elsevier Science (USA)</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2404a1afe0453b59783c4b6c7e61d690a66481c4c18b7b2916c291cfc51731433</citedby><cites>FETCH-LOGICAL-c316t-2404a1afe0453b59783c4b6c7e61d690a66481c4c18b7b2916c291cfc51731433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13397378$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Berman, Piotr</creatorcontrib><creatorcontrib>DasGupta, Bhaskar</creatorcontrib><creatorcontrib>Muthukrishnan, S</creatorcontrib><creatorcontrib>Ramaswami, Suneeta</creatorcontrib><title>Efficient Approximation Algorithms for Tiling and Packing Problems with Rectangles</title><title>Journal of algorithms</title><description>We provide improved approximation algorithms for several rectangle tiling and packing problems (RTILE, DRTILE, and d-RPACK) studied in the literature. Most of our algorithms are highly efficient since their running times are near-linear in the sparse input size rather than in the domain size. In addition, we improve the best known approximation ratios.</description><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Convex and discrete geometry</subject><subject>Designs and configurations</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><issn>0196-6774</issn><issn>1090-2678</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kLtrwzAQxkVpoWnatbOXjk51lizZYwjpAwINIZ2FfJZcpY5tJNPHf1-ZFDp1uTu477vHj5BboAugVNwfdHNcZJTCAqAozsgMaEnTTMjinMwolCIVUvJLchXCIaog5-WM7NbWOnSmG5PlMPj-yx316PouWbZN7934dgyJ7X2yd63rmkR3dbLV-D7VW99XrYn9zyhLdgZH3TWtCdfkwuo2mJvfPCevD-v96indvDw-r5abFBmIMc045Rq0NZTnrMpLWTDklUBpBNSipFoIXgByhKKSVVaCwBjQYg6SAWdsThanuej7ELyxavDxev-tgKqJiJqIqImImohEw93JMOiAurVed-jCn4uxUjI56YqTzsTrP5zxKkyE0NTOxy9V3bv_VvwAEnl0SQ</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Berman, Piotr</creator><creator>DasGupta, Bhaskar</creator><creator>Muthukrishnan, S</creator><creator>Ramaswami, Suneeta</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20011101</creationdate><title>Efficient Approximation Algorithms for Tiling and Packing Problems with Rectangles</title><author>Berman, Piotr ; DasGupta, Bhaskar ; Muthukrishnan, S ; Ramaswami, Suneeta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2404a1afe0453b59783c4b6c7e61d690a66481c4c18b7b2916c291cfc51731433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Convex and discrete geometry</topic><topic>Designs and configurations</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berman, Piotr</creatorcontrib><creatorcontrib>DasGupta, Bhaskar</creatorcontrib><creatorcontrib>Muthukrishnan, S</creatorcontrib><creatorcontrib>Ramaswami, Suneeta</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berman, Piotr</au><au>DasGupta, Bhaskar</au><au>Muthukrishnan, S</au><au>Ramaswami, Suneeta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Approximation Algorithms for Tiling and Packing Problems with Rectangles</atitle><jtitle>Journal of algorithms</jtitle><date>2001-11-01</date><risdate>2001</risdate><volume>41</volume><issue>2</issue><spage>443</spage><epage>470</epage><pages>443-470</pages><issn>0196-6774</issn><eissn>1090-2678</eissn><coden>JOALDV</coden><abstract>We provide improved approximation algorithms for several rectangle tiling and packing problems (RTILE, DRTILE, and d-RPACK) studied in the literature. Most of our algorithms are highly efficient since their running times are near-linear in the sparse input size rather than in the domain size. In addition, we improve the best known approximation ratios.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jagm.2001.1188</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-6774
ispartof Journal of algorithms, 2001-11, Vol.41 (2), p.443-470
issn 0196-6774
1090-2678
language eng
recordid cdi_crossref_primary_10_1006_jagm_2001_1188
source Alma/SFX Local Collection
subjects Combinatorics
Combinatorics. Ordered structures
Convex and discrete geometry
Designs and configurations
Exact sciences and technology
Geometry
Mathematics
Sciences and techniques of general use
title Efficient Approximation Algorithms for Tiling and Packing Problems with Rectangles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Approximation%20Algorithms%20for%20Tiling%20and%20Packing%20Problems%20with%20Rectangles&rft.jtitle=Journal%20of%20algorithms&rft.au=Berman,%20Piotr&rft.date=2001-11-01&rft.volume=41&rft.issue=2&rft.spage=443&rft.epage=470&rft.pages=443-470&rft.issn=0196-6774&rft.eissn=1090-2678&rft.coden=JOALDV&rft_id=info:doi/10.1006/jagm.2001.1188&rft_dat=%3Celsevier_cross%3ES0196677401911885%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0196677401911885&rfr_iscdi=true