Greedy Dynamic Routing on Arrays

We study the problem of dynamic routing on arrays. We prove that a large class of greedy algorithms perform very well on average. In the dynamic case, when the arrival rate of packets in anN×Narray is at most 99% of network capacity, we establish an exponential bound on the tail of the delay distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algorithms 1998-11, Vol.29 (2), p.390-410
Hauptverfasser: Kahale, Nabil, Leighton, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue 2
container_start_page 390
container_title Journal of algorithms
container_volume 29
creator Kahale, Nabil
Leighton, Tom
description We study the problem of dynamic routing on arrays. We prove that a large class of greedy algorithms perform very well on average. In the dynamic case, when the arrival rate of packets in anN×Narray is at most 99% of network capacity, we establish an exponential bound on the tail of the delay distribution. Moreover, we show that in any window ofTsteps, the maximum queue-size isO(1+logT/logN) with high probability. We extend these results to the case of bit-serial routing, and to the static case. We also calculate the exact value of the ergodic expected delay and queue-sizes under the farthest first protocol for the one-dimensional array, and for the ring when the arrivals are Poisson.
doi_str_mv 10.1006/jagm.1998.0958
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jagm_1998_0958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196677498909580</els_id><sourcerecordid>S0196677498909580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2dbd15b53d86f6c4517f537f9fa9dfd981b14e1b040263f1bd6b197af75fbf9a3</originalsourceid><addsrcrecordid>eNp1j01Lw0AURQdRMFa3rrNwm_hekpnJLEvVKhQE0fUwn2VKk5SZKuTfm9CCK1dvc8999xByj1AiAHvcqW1XohBtCYK2FyRDEFBUjLeXJAMUrGCcN9fkJqUdACJtREbydXTOjvnT2KsumPxj-D6GfpsPfb6MUY3pllx5tU_u7nwX5Ovl-XP1Wmze12-r5aYwFYdjUVltkWpa25Z5ZhqK3NOae-GVsN6KFjU2DjU0ULHao7ZMo-DKc-q1F6pekPLUa-KQUnReHmLoVBwlgpz95OwnZz85-03Awwk4qGTU3kfVm5D-KM5xWjbF2lPMTeN_gosymeB642yIzhylHcJ_H34BczFiww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Greedy Dynamic Routing on Arrays</title><source>Alma/SFX Local Collection</source><creator>Kahale, Nabil ; Leighton, Tom</creator><creatorcontrib>Kahale, Nabil ; Leighton, Tom</creatorcontrib><description>We study the problem of dynamic routing on arrays. We prove that a large class of greedy algorithms perform very well on average. In the dynamic case, when the arrival rate of packets in anN×Narray is at most 99% of network capacity, we establish an exponential bound on the tail of the delay distribution. Moreover, we show that in any window ofTsteps, the maximum queue-size isO(1+logT/logN) with high probability. We extend these results to the case of bit-serial routing, and to the static case. We also calculate the exact value of the ergodic expected delay and queue-sizes under the farthest first protocol for the one-dimensional array, and for the ring when the arrivals are Poisson.</description><identifier>ISSN: 0196-6774</identifier><identifier>EISSN: 1090-2678</identifier><identifier>DOI: 10.1006/jagm.1998.0958</identifier><identifier>CODEN: JOALDV</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Journal of algorithms, 1998-11, Vol.29 (2), p.390-410</ispartof><rights>1998 Academic Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-2dbd15b53d86f6c4517f537f9fa9dfd981b14e1b040263f1bd6b197af75fbf9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1771270$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kahale, Nabil</creatorcontrib><creatorcontrib>Leighton, Tom</creatorcontrib><title>Greedy Dynamic Routing on Arrays</title><title>Journal of algorithms</title><description>We study the problem of dynamic routing on arrays. We prove that a large class of greedy algorithms perform very well on average. In the dynamic case, when the arrival rate of packets in anN×Narray is at most 99% of network capacity, we establish an exponential bound on the tail of the delay distribution. Moreover, we show that in any window ofTsteps, the maximum queue-size isO(1+logT/logN) with high probability. We extend these results to the case of bit-serial routing, and to the static case. We also calculate the exact value of the ergodic expected delay and queue-sizes under the farthest first protocol for the one-dimensional array, and for the ring when the arrivals are Poisson.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0196-6774</issn><issn>1090-2678</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1j01Lw0AURQdRMFa3rrNwm_hekpnJLEvVKhQE0fUwn2VKk5SZKuTfm9CCK1dvc8999xByj1AiAHvcqW1XohBtCYK2FyRDEFBUjLeXJAMUrGCcN9fkJqUdACJtREbydXTOjvnT2KsumPxj-D6GfpsPfb6MUY3pllx5tU_u7nwX5Ovl-XP1Wmze12-r5aYwFYdjUVltkWpa25Z5ZhqK3NOae-GVsN6KFjU2DjU0ULHao7ZMo-DKc-q1F6pekPLUa-KQUnReHmLoVBwlgpz95OwnZz85-03Awwk4qGTU3kfVm5D-KM5xWjbF2lPMTeN_gosymeB642yIzhylHcJ_H34BczFiww</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Kahale, Nabil</creator><creator>Leighton, Tom</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19981101</creationdate><title>Greedy Dynamic Routing on Arrays</title><author>Kahale, Nabil ; Leighton, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2dbd15b53d86f6c4517f537f9fa9dfd981b14e1b040263f1bd6b197af75fbf9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kahale, Nabil</creatorcontrib><creatorcontrib>Leighton, Tom</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kahale, Nabil</au><au>Leighton, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greedy Dynamic Routing on Arrays</atitle><jtitle>Journal of algorithms</jtitle><date>1998-11-01</date><risdate>1998</risdate><volume>29</volume><issue>2</issue><spage>390</spage><epage>410</epage><pages>390-410</pages><issn>0196-6774</issn><eissn>1090-2678</eissn><coden>JOALDV</coden><abstract>We study the problem of dynamic routing on arrays. We prove that a large class of greedy algorithms perform very well on average. In the dynamic case, when the arrival rate of packets in anN×Narray is at most 99% of network capacity, we establish an exponential bound on the tail of the delay distribution. Moreover, we show that in any window ofTsteps, the maximum queue-size isO(1+logT/logN) with high probability. We extend these results to the case of bit-serial routing, and to the static case. We also calculate the exact value of the ergodic expected delay and queue-sizes under the farthest first protocol for the one-dimensional array, and for the ring when the arrivals are Poisson.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jagm.1998.0958</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-6774
ispartof Journal of algorithms, 1998-11, Vol.29 (2), p.390-410
issn 0196-6774
1090-2678
language eng
recordid cdi_crossref_primary_10_1006_jagm_1998_0958
source Alma/SFX Local Collection
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Theoretical computing
title Greedy Dynamic Routing on Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greedy%20Dynamic%20Routing%20on%20Arrays&rft.jtitle=Journal%20of%20algorithms&rft.au=Kahale,%20Nabil&rft.date=1998-11-01&rft.volume=29&rft.issue=2&rft.spage=390&rft.epage=410&rft.pages=390-410&rft.issn=0196-6774&rft.eissn=1090-2678&rft.coden=JOALDV&rft_id=info:doi/10.1006/jagm.1998.0958&rft_dat=%3Celsevier_cross%3ES0196677498909580%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0196677498909580&rfr_iscdi=true