Approximation Algorithms for Steiner and Directed Multicuts
In this paper we consider theSteiner multicutproblem. This is a generalization of the minimum multicut problem where instead of separating nodepairs, the goal is to find a minimum weight set of edges that separates all givensetsof nodes. A set is considered separated if it is not contained in a sing...
Gespeichert in:
Veröffentlicht in: | Journal of algorithms 1997-02, Vol.22 (2), p.241-269 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 269 |
---|---|
container_issue | 2 |
container_start_page | 241 |
container_title | Journal of algorithms |
container_volume | 22 |
creator | Klein, Philip N Plotkin, Serge A Rao, Satish Tardos, Éva |
description | In this paper we consider theSteiner multicutproblem. This is a generalization of the minimum multicut problem where instead of separating nodepairs, the goal is to find a minimum weight set of edges that separates all givensetsof nodes. A set is considered separated if it is not contained in a single connected component. We show anO(log3(kt)) approximation algorithm for the Steiner multicut problem, wherekis the number of sets andtis the maximum cardinality of a set. This improves theO(tlogk) bound that easily follows from the previously known multicut results. We also consider an extension of multicuts to directed case, namely the problem of finding a minimum-weight set of edges whose removal ensures that none of the strongly connected components includes one of the prespecifiedknode pairs. In this paper we describe anO(log2k) approximation algorithm for this directed multicut problem. Ifk⪡n, this represents an improvement over theO(lognloglogn) approximation algorithm that is implied by the technique of Seymour. |
doi_str_mv | 10.1006/jagm.1996.0833 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jagm_1996_0833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196677496908330</els_id><sourcerecordid>S0196677496908330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-e30b4ab43094e79804b55e61d50abd896050492e301c0c000574fad0695ef8663</originalsourceid><addsrcrecordid>eNp1jzFPwzAQhS0EEqWwMmdgTTgnthOLqSoUkIoYgNly7EtxlSaR7SL49yQUsTHd8r137yPkkkJGAcT1Vm92GZVSZFAVxRGZUZCQ5qKsjskMqBSpKEt2Ss5C2AJQypmckZvFMPj-0-10dH2XLNpN711834Wk6X3yEtF16BPd2eTWeTQRbfK0b6Mz-xjOyUmj24AXv3dO3lZ3r8uHdP18_7hcrFPDchpTLKBmumYFSIalrIDVnKOgloOubSUFcGAyHzFqwAAAL1mjLQjJsamEKOYkO_Qa34fgsVGDHwf7L0VBTepqUleTuprUx8DVITDoYHTbeN0ZF_5SOedC5HzEqgOG4_gPh14F47AzaH9Ule3dfx--AQfYa9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximation Algorithms for Steiner and Directed Multicuts</title><source>Alma/SFX Local Collection</source><creator>Klein, Philip N ; Plotkin, Serge A ; Rao, Satish ; Tardos, Éva</creator><creatorcontrib>Klein, Philip N ; Plotkin, Serge A ; Rao, Satish ; Tardos, Éva</creatorcontrib><description>In this paper we consider theSteiner multicutproblem. This is a generalization of the minimum multicut problem where instead of separating nodepairs, the goal is to find a minimum weight set of edges that separates all givensetsof nodes. A set is considered separated if it is not contained in a single connected component. We show anO(log3(kt)) approximation algorithm for the Steiner multicut problem, wherekis the number of sets andtis the maximum cardinality of a set. This improves theO(tlogk) bound that easily follows from the previously known multicut results. We also consider an extension of multicuts to directed case, namely the problem of finding a minimum-weight set of edges whose removal ensures that none of the strongly connected components includes one of the prespecifiedknode pairs. In this paper we describe anO(log2k) approximation algorithm for this directed multicut problem. Ifk⪡n, this represents an improvement over theO(lognloglogn) approximation algorithm that is implied by the technique of Seymour.</description><identifier>ISSN: 0196-6774</identifier><identifier>EISSN: 1090-2678</identifier><identifier>DOI: 10.1006/jagm.1996.0833</identifier><identifier>CODEN: JOALDV</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Information retrieval. Graph ; Theoretical computing</subject><ispartof>Journal of algorithms, 1997-02, Vol.22 (2), p.241-269</ispartof><rights>1997 Academic Press</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-e30b4ab43094e79804b55e61d50abd896050492e301c0c000574fad0695ef8663</citedby><cites>FETCH-LOGICAL-c421t-e30b4ab43094e79804b55e61d50abd896050492e301c0c000574fad0695ef8663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2556625$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Philip N</creatorcontrib><creatorcontrib>Plotkin, Serge A</creatorcontrib><creatorcontrib>Rao, Satish</creatorcontrib><creatorcontrib>Tardos, Éva</creatorcontrib><title>Approximation Algorithms for Steiner and Directed Multicuts</title><title>Journal of algorithms</title><description>In this paper we consider theSteiner multicutproblem. This is a generalization of the minimum multicut problem where instead of separating nodepairs, the goal is to find a minimum weight set of edges that separates all givensetsof nodes. A set is considered separated if it is not contained in a single connected component. We show anO(log3(kt)) approximation algorithm for the Steiner multicut problem, wherekis the number of sets andtis the maximum cardinality of a set. This improves theO(tlogk) bound that easily follows from the previously known multicut results. We also consider an extension of multicuts to directed case, namely the problem of finding a minimum-weight set of edges whose removal ensures that none of the strongly connected components includes one of the prespecifiedknode pairs. In this paper we describe anO(log2k) approximation algorithm for this directed multicut problem. Ifk⪡n, this represents an improvement over theO(lognloglogn) approximation algorithm that is implied by the technique of Seymour.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Theoretical computing</subject><issn>0196-6774</issn><issn>1090-2678</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1jzFPwzAQhS0EEqWwMmdgTTgnthOLqSoUkIoYgNly7EtxlSaR7SL49yQUsTHd8r137yPkkkJGAcT1Vm92GZVSZFAVxRGZUZCQ5qKsjskMqBSpKEt2Ss5C2AJQypmckZvFMPj-0-10dH2XLNpN711834Wk6X3yEtF16BPd2eTWeTQRbfK0b6Mz-xjOyUmj24AXv3dO3lZ3r8uHdP18_7hcrFPDchpTLKBmumYFSIalrIDVnKOgloOubSUFcGAyHzFqwAAAL1mjLQjJsamEKOYkO_Qa34fgsVGDHwf7L0VBTepqUleTuprUx8DVITDoYHTbeN0ZF_5SOedC5HzEqgOG4_gPh14F47AzaH9Ule3dfx--AQfYa9Q</recordid><startdate>19970201</startdate><enddate>19970201</enddate><creator>Klein, Philip N</creator><creator>Plotkin, Serge A</creator><creator>Rao, Satish</creator><creator>Tardos, Éva</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970201</creationdate><title>Approximation Algorithms for Steiner and Directed Multicuts</title><author>Klein, Philip N ; Plotkin, Serge A ; Rao, Satish ; Tardos, Éva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-e30b4ab43094e79804b55e61d50abd896050492e301c0c000574fad0695ef8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Philip N</creatorcontrib><creatorcontrib>Plotkin, Serge A</creatorcontrib><creatorcontrib>Rao, Satish</creatorcontrib><creatorcontrib>Tardos, Éva</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Philip N</au><au>Plotkin, Serge A</au><au>Rao, Satish</au><au>Tardos, Éva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation Algorithms for Steiner and Directed Multicuts</atitle><jtitle>Journal of algorithms</jtitle><date>1997-02-01</date><risdate>1997</risdate><volume>22</volume><issue>2</issue><spage>241</spage><epage>269</epage><pages>241-269</pages><issn>0196-6774</issn><eissn>1090-2678</eissn><coden>JOALDV</coden><abstract>In this paper we consider theSteiner multicutproblem. This is a generalization of the minimum multicut problem where instead of separating nodepairs, the goal is to find a minimum weight set of edges that separates all givensetsof nodes. A set is considered separated if it is not contained in a single connected component. We show anO(log3(kt)) approximation algorithm for the Steiner multicut problem, wherekis the number of sets andtis the maximum cardinality of a set. This improves theO(tlogk) bound that easily follows from the previously known multicut results. We also consider an extension of multicuts to directed case, namely the problem of finding a minimum-weight set of edges whose removal ensures that none of the strongly connected components includes one of the prespecifiedknode pairs. In this paper we describe anO(log2k) approximation algorithm for this directed multicut problem. Ifk⪡n, this represents an improvement over theO(lognloglogn) approximation algorithm that is implied by the technique of Seymour.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jagm.1996.0833</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-6774 |
ispartof | Journal of algorithms, 1997-02, Vol.22 (2), p.241-269 |
issn | 0196-6774 1090-2678 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jagm_1996_0833 |
source | Alma/SFX Local Collection |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Exact sciences and technology Information retrieval. Graph Theoretical computing |
title | Approximation Algorithms for Steiner and Directed Multicuts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20Algorithms%20for%20Steiner%20and%20Directed%20Multicuts&rft.jtitle=Journal%20of%20algorithms&rft.au=Klein,%20Philip%20N&rft.date=1997-02-01&rft.volume=22&rft.issue=2&rft.spage=241&rft.epage=269&rft.pages=241-269&rft.issn=0196-6774&rft.eissn=1090-2678&rft.coden=JOALDV&rft_id=info:doi/10.1006/jagm.1996.0833&rft_dat=%3Celsevier_cross%3ES0196677496908330%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0196677496908330&rfr_iscdi=true |