Approximation Algorithms for Steiner and Directed Multicuts

In this paper we consider theSteiner multicutproblem. This is a generalization of the minimum multicut problem where instead of separating nodepairs, the goal is to find a minimum weight set of edges that separates all givensetsof nodes. A set is considered separated if it is not contained in a sing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algorithms 1997-02, Vol.22 (2), p.241-269
Hauptverfasser: Klein, Philip N, Plotkin, Serge A, Rao, Satish, Tardos, Éva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue 2
container_start_page 241
container_title Journal of algorithms
container_volume 22
creator Klein, Philip N
Plotkin, Serge A
Rao, Satish
Tardos, Éva
description In this paper we consider theSteiner multicutproblem. This is a generalization of the minimum multicut problem where instead of separating nodepairs, the goal is to find a minimum weight set of edges that separates all givensetsof nodes. A set is considered separated if it is not contained in a single connected component. We show anO(log3(kt)) approximation algorithm for the Steiner multicut problem, wherekis the number of sets andtis the maximum cardinality of a set. This improves theO(tlogk) bound that easily follows from the previously known multicut results. We also consider an extension of multicuts to directed case, namely the problem of finding a minimum-weight set of edges whose removal ensures that none of the strongly connected components includes one of the prespecifiedknode pairs. In this paper we describe anO(log2k) approximation algorithm for this directed multicut problem. Ifk⪡n, this represents an improvement over theO(lognloglogn) approximation algorithm that is implied by the technique of Seymour.
doi_str_mv 10.1006/jagm.1996.0833
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jagm_1996_0833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196677496908330</els_id><sourcerecordid>S0196677496908330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-e30b4ab43094e79804b55e61d50abd896050492e301c0c000574fad0695ef8663</originalsourceid><addsrcrecordid>eNp1jzFPwzAQhS0EEqWwMmdgTTgnthOLqSoUkIoYgNly7EtxlSaR7SL49yQUsTHd8r137yPkkkJGAcT1Vm92GZVSZFAVxRGZUZCQ5qKsjskMqBSpKEt2Ss5C2AJQypmckZvFMPj-0-10dH2XLNpN711834Wk6X3yEtF16BPd2eTWeTQRbfK0b6Mz-xjOyUmj24AXv3dO3lZ3r8uHdP18_7hcrFPDchpTLKBmumYFSIalrIDVnKOgloOubSUFcGAyHzFqwAAAL1mjLQjJsamEKOYkO_Qa34fgsVGDHwf7L0VBTepqUleTuprUx8DVITDoYHTbeN0ZF_5SOedC5HzEqgOG4_gPh14F47AzaH9Ule3dfx--AQfYa9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximation Algorithms for Steiner and Directed Multicuts</title><source>Alma/SFX Local Collection</source><creator>Klein, Philip N ; Plotkin, Serge A ; Rao, Satish ; Tardos, Éva</creator><creatorcontrib>Klein, Philip N ; Plotkin, Serge A ; Rao, Satish ; Tardos, Éva</creatorcontrib><description>In this paper we consider theSteiner multicutproblem. This is a generalization of the minimum multicut problem where instead of separating nodepairs, the goal is to find a minimum weight set of edges that separates all givensetsof nodes. A set is considered separated if it is not contained in a single connected component. We show anO(log3(kt)) approximation algorithm for the Steiner multicut problem, wherekis the number of sets andtis the maximum cardinality of a set. This improves theO(tlogk) bound that easily follows from the previously known multicut results. We also consider an extension of multicuts to directed case, namely the problem of finding a minimum-weight set of edges whose removal ensures that none of the strongly connected components includes one of the prespecifiedknode pairs. In this paper we describe anO(log2k) approximation algorithm for this directed multicut problem. Ifk⪡n, this represents an improvement over theO(lognloglogn) approximation algorithm that is implied by the technique of Seymour.</description><identifier>ISSN: 0196-6774</identifier><identifier>EISSN: 1090-2678</identifier><identifier>DOI: 10.1006/jagm.1996.0833</identifier><identifier>CODEN: JOALDV</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Information retrieval. Graph ; Theoretical computing</subject><ispartof>Journal of algorithms, 1997-02, Vol.22 (2), p.241-269</ispartof><rights>1997 Academic Press</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-e30b4ab43094e79804b55e61d50abd896050492e301c0c000574fad0695ef8663</citedby><cites>FETCH-LOGICAL-c421t-e30b4ab43094e79804b55e61d50abd896050492e301c0c000574fad0695ef8663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2556625$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Philip N</creatorcontrib><creatorcontrib>Plotkin, Serge A</creatorcontrib><creatorcontrib>Rao, Satish</creatorcontrib><creatorcontrib>Tardos, Éva</creatorcontrib><title>Approximation Algorithms for Steiner and Directed Multicuts</title><title>Journal of algorithms</title><description>In this paper we consider theSteiner multicutproblem. This is a generalization of the minimum multicut problem where instead of separating nodepairs, the goal is to find a minimum weight set of edges that separates all givensetsof nodes. A set is considered separated if it is not contained in a single connected component. We show anO(log3(kt)) approximation algorithm for the Steiner multicut problem, wherekis the number of sets andtis the maximum cardinality of a set. This improves theO(tlogk) bound that easily follows from the previously known multicut results. We also consider an extension of multicuts to directed case, namely the problem of finding a minimum-weight set of edges whose removal ensures that none of the strongly connected components includes one of the prespecifiedknode pairs. In this paper we describe anO(log2k) approximation algorithm for this directed multicut problem. Ifk⪡n, this represents an improvement over theO(lognloglogn) approximation algorithm that is implied by the technique of Seymour.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Theoretical computing</subject><issn>0196-6774</issn><issn>1090-2678</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1jzFPwzAQhS0EEqWwMmdgTTgnthOLqSoUkIoYgNly7EtxlSaR7SL49yQUsTHd8r137yPkkkJGAcT1Vm92GZVSZFAVxRGZUZCQ5qKsjskMqBSpKEt2Ss5C2AJQypmckZvFMPj-0-10dH2XLNpN711834Wk6X3yEtF16BPd2eTWeTQRbfK0b6Mz-xjOyUmj24AXv3dO3lZ3r8uHdP18_7hcrFPDchpTLKBmumYFSIalrIDVnKOgloOubSUFcGAyHzFqwAAAL1mjLQjJsamEKOYkO_Qa34fgsVGDHwf7L0VBTepqUleTuprUx8DVITDoYHTbeN0ZF_5SOedC5HzEqgOG4_gPh14F47AzaH9Ule3dfx--AQfYa9Q</recordid><startdate>19970201</startdate><enddate>19970201</enddate><creator>Klein, Philip N</creator><creator>Plotkin, Serge A</creator><creator>Rao, Satish</creator><creator>Tardos, Éva</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970201</creationdate><title>Approximation Algorithms for Steiner and Directed Multicuts</title><author>Klein, Philip N ; Plotkin, Serge A ; Rao, Satish ; Tardos, Éva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-e30b4ab43094e79804b55e61d50abd896050492e301c0c000574fad0695ef8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Philip N</creatorcontrib><creatorcontrib>Plotkin, Serge A</creatorcontrib><creatorcontrib>Rao, Satish</creatorcontrib><creatorcontrib>Tardos, Éva</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Philip N</au><au>Plotkin, Serge A</au><au>Rao, Satish</au><au>Tardos, Éva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation Algorithms for Steiner and Directed Multicuts</atitle><jtitle>Journal of algorithms</jtitle><date>1997-02-01</date><risdate>1997</risdate><volume>22</volume><issue>2</issue><spage>241</spage><epage>269</epage><pages>241-269</pages><issn>0196-6774</issn><eissn>1090-2678</eissn><coden>JOALDV</coden><abstract>In this paper we consider theSteiner multicutproblem. This is a generalization of the minimum multicut problem where instead of separating nodepairs, the goal is to find a minimum weight set of edges that separates all givensetsof nodes. A set is considered separated if it is not contained in a single connected component. We show anO(log3(kt)) approximation algorithm for the Steiner multicut problem, wherekis the number of sets andtis the maximum cardinality of a set. This improves theO(tlogk) bound that easily follows from the previously known multicut results. We also consider an extension of multicuts to directed case, namely the problem of finding a minimum-weight set of edges whose removal ensures that none of the strongly connected components includes one of the prespecifiedknode pairs. In this paper we describe anO(log2k) approximation algorithm for this directed multicut problem. Ifk⪡n, this represents an improvement over theO(lognloglogn) approximation algorithm that is implied by the technique of Seymour.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jagm.1996.0833</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-6774
ispartof Journal of algorithms, 1997-02, Vol.22 (2), p.241-269
issn 0196-6774
1090-2678
language eng
recordid cdi_crossref_primary_10_1006_jagm_1996_0833
source Alma/SFX Local Collection
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Information retrieval. Graph
Theoretical computing
title Approximation Algorithms for Steiner and Directed Multicuts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20Algorithms%20for%20Steiner%20and%20Directed%20Multicuts&rft.jtitle=Journal%20of%20algorithms&rft.au=Klein,%20Philip%20N&rft.date=1997-02-01&rft.volume=22&rft.issue=2&rft.spage=241&rft.epage=269&rft.pages=241-269&rft.issn=0196-6774&rft.eissn=1090-2678&rft.coden=JOALDV&rft_id=info:doi/10.1006/jagm.1996.0833&rft_dat=%3Celsevier_cross%3ES0196677496908330%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0196677496908330&rfr_iscdi=true