More Efficient Parallel Totally Monotone Matrix Searching
We give a parallel algorithm for computing all row minima in a totally monotonen×nmatrix which is simpler and more work efficient than previous polylog-time algorithms. It runs inO(lgnlglgn) time doingO(nlgn)work on aCRCW PRAM, inO(lgn(lglgn)2) time doingO(nlgn)work on aCREW PRAM, and inO(lgnlgnlglg...
Gespeichert in:
Veröffentlicht in: | Journal of algorithms 1997-05, Vol.23 (2), p.386-400 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 400 |
---|---|
container_issue | 2 |
container_start_page | 386 |
container_title | Journal of algorithms |
container_volume | 23 |
creator | Bradford, Phillip G Fleischer, Rudolf Smid, Michiel |
description | We give a parallel algorithm for computing all row minima in a totally monotonen×nmatrix which is simpler and more work efficient than previous polylog-time algorithms. It runs inO(lgnlglgn) time doingO(nlgn)work on aCRCW PRAM, inO(lgn(lglgn)2) time doingO(nlgn)work on aCREW PRAM, and inO(lgnlgnlglgn)time doingO(nlgnlglgn)work on anEREW PRAM. Since finding the row minima of a totally monotone matrix has been shown to be fundamental in the efficient solution of a host of geometric and combinatorial problems, our algorithm leads directly to improved parallel solutions of many algorithms in terms of their work efficiency. |
doi_str_mv | 10.1006/jagm.1996.0824 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jagm_1996_0824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S019667749690824X</els_id><sourcerecordid>S019667749690824X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-4cc944d42f54edb68e244428adf130346d09fdea9a34b81a6ba3b8124e8537533</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwMmdgTbDji2uPqCofUiuQKLN1dc7FVZpUdoTof0-iIjamd8N7d_d7jN0KXgjO1f0Ot_tCGKMKrks4YxPBDc9LNdPnbMKFUbmazeCSXaW041yICsyEmVUXKVt4H1ygts_eMGLTUJOtu34Yjtmqa7u-aylbYR_Dd_ZOGN1naLfX7MJjk-jmV6fs43Gxnj_ny9enl_nDMndSVH0OzhmAGkpfAdUbpakEgFJj7YXkElTNja8JDUrYaIFqg3LQEkhXclZJOWXFaa-LXUqRvD3EsMd4tILbEdyO4HYEtyP4ELg7BQ6YHDY-YutC-kuVSoHQo02fbDQ8_xUo2jRW4KgOkVxv6y78d-EHDO1rZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>More Efficient Parallel Totally Monotone Matrix Searching</title><source>Alma/SFX Local Collection</source><creator>Bradford, Phillip G ; Fleischer, Rudolf ; Smid, Michiel</creator><creatorcontrib>Bradford, Phillip G ; Fleischer, Rudolf ; Smid, Michiel</creatorcontrib><description>We give a parallel algorithm for computing all row minima in a totally monotonen×nmatrix which is simpler and more work efficient than previous polylog-time algorithms. It runs inO(lgnlglgn) time doingO(nlgn)work on aCRCW PRAM, inO(lgn(lglgn)2) time doingO(nlgn)work on aCREW PRAM, and inO(lgnlgnlglgn)time doingO(nlgnlglgn)work on anEREW PRAM. Since finding the row minima of a totally monotone matrix has been shown to be fundamental in the efficient solution of a host of geometric and combinatorial problems, our algorithm leads directly to improved parallel solutions of many algorithms in terms of their work efficiency.</description><identifier>ISSN: 0196-6774</identifier><identifier>EISSN: 1090-2678</identifier><identifier>DOI: 10.1006/jagm.1996.0824</identifier><identifier>CODEN: JOALDV</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Journal of algorithms, 1997-05, Vol.23 (2), p.386-400</ispartof><rights>1997 Academic Press</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-4cc944d42f54edb68e244428adf130346d09fdea9a34b81a6ba3b8124e8537533</citedby><cites>FETCH-LOGICAL-c315t-4cc944d42f54edb68e244428adf130346d09fdea9a34b81a6ba3b8124e8537533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2664184$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bradford, Phillip G</creatorcontrib><creatorcontrib>Fleischer, Rudolf</creatorcontrib><creatorcontrib>Smid, Michiel</creatorcontrib><title>More Efficient Parallel Totally Monotone Matrix Searching</title><title>Journal of algorithms</title><description>We give a parallel algorithm for computing all row minima in a totally monotonen×nmatrix which is simpler and more work efficient than previous polylog-time algorithms. It runs inO(lgnlglgn) time doingO(nlgn)work on aCRCW PRAM, inO(lgn(lglgn)2) time doingO(nlgn)work on aCREW PRAM, and inO(lgnlgnlglgn)time doingO(nlgnlglgn)work on anEREW PRAM. Since finding the row minima of a totally monotone matrix has been shown to be fundamental in the efficient solution of a host of geometric and combinatorial problems, our algorithm leads directly to improved parallel solutions of many algorithms in terms of their work efficiency.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0196-6774</issn><issn>1090-2678</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwMmdgTbDji2uPqCofUiuQKLN1dc7FVZpUdoTof0-iIjamd8N7d_d7jN0KXgjO1f0Ot_tCGKMKrks4YxPBDc9LNdPnbMKFUbmazeCSXaW041yICsyEmVUXKVt4H1ygts_eMGLTUJOtu34Yjtmqa7u-aylbYR_Dd_ZOGN1naLfX7MJjk-jmV6fs43Gxnj_ny9enl_nDMndSVH0OzhmAGkpfAdUbpakEgFJj7YXkElTNja8JDUrYaIFqg3LQEkhXclZJOWXFaa-LXUqRvD3EsMd4tILbEdyO4HYEtyP4ELg7BQ6YHDY-YutC-kuVSoHQo02fbDQ8_xUo2jRW4KgOkVxv6y78d-EHDO1rZg</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>Bradford, Phillip G</creator><creator>Fleischer, Rudolf</creator><creator>Smid, Michiel</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970501</creationdate><title>More Efficient Parallel Totally Monotone Matrix Searching</title><author>Bradford, Phillip G ; Fleischer, Rudolf ; Smid, Michiel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-4cc944d42f54edb68e244428adf130346d09fdea9a34b81a6ba3b8124e8537533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradford, Phillip G</creatorcontrib><creatorcontrib>Fleischer, Rudolf</creatorcontrib><creatorcontrib>Smid, Michiel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradford, Phillip G</au><au>Fleischer, Rudolf</au><au>Smid, Michiel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>More Efficient Parallel Totally Monotone Matrix Searching</atitle><jtitle>Journal of algorithms</jtitle><date>1997-05-01</date><risdate>1997</risdate><volume>23</volume><issue>2</issue><spage>386</spage><epage>400</epage><pages>386-400</pages><issn>0196-6774</issn><eissn>1090-2678</eissn><coden>JOALDV</coden><abstract>We give a parallel algorithm for computing all row minima in a totally monotonen×nmatrix which is simpler and more work efficient than previous polylog-time algorithms. It runs inO(lgnlglgn) time doingO(nlgn)work on aCRCW PRAM, inO(lgn(lglgn)2) time doingO(nlgn)work on aCREW PRAM, and inO(lgnlgnlglgn)time doingO(nlgnlglgn)work on anEREW PRAM. Since finding the row minima of a totally monotone matrix has been shown to be fundamental in the efficient solution of a host of geometric and combinatorial problems, our algorithm leads directly to improved parallel solutions of many algorithms in terms of their work efficiency.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jagm.1996.0824</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-6774 |
ispartof | Journal of algorithms, 1997-05, Vol.23 (2), p.386-400 |
issn | 0196-6774 1090-2678 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jagm_1996_0824 |
source | Alma/SFX Local Collection |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Exact sciences and technology Theoretical computing |
title | More Efficient Parallel Totally Monotone Matrix Searching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=More%20Efficient%20Parallel%20Totally%20Monotone%20Matrix%20Searching&rft.jtitle=Journal%20of%20algorithms&rft.au=Bradford,%20Phillip%20G&rft.date=1997-05-01&rft.volume=23&rft.issue=2&rft.spage=386&rft.epage=400&rft.pages=386-400&rft.issn=0196-6774&rft.eissn=1090-2678&rft.coden=JOALDV&rft_id=info:doi/10.1006/jagm.1996.0824&rft_dat=%3Celsevier_cross%3ES019667749690824X%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S019667749690824X&rfr_iscdi=true |