More Efficient Parallel Totally Monotone Matrix Searching

We give a parallel algorithm for computing all row minima in a totally monotonen×nmatrix which is simpler and more work efficient than previous polylog-time algorithms. It runs inO(lgnlglgn) time doingO(nlgn)work on aCRCW PRAM, inO(lgn(lglgn)2) time doingO(nlgn)work on aCREW PRAM, and inO(lgnlgnlglg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algorithms 1997-05, Vol.23 (2), p.386-400
Hauptverfasser: Bradford, Phillip G, Fleischer, Rudolf, Smid, Michiel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 2
container_start_page 386
container_title Journal of algorithms
container_volume 23
creator Bradford, Phillip G
Fleischer, Rudolf
Smid, Michiel
description We give a parallel algorithm for computing all row minima in a totally monotonen×nmatrix which is simpler and more work efficient than previous polylog-time algorithms. It runs inO(lgnlglgn) time doingO(nlgn)work on aCRCW PRAM, inO(lgn(lglgn)2) time doingO(nlgn)work on aCREW PRAM, and inO(lgnlgnlglgn)time doingO(nlgnlglgn)work on anEREW PRAM. Since finding the row minima of a totally monotone matrix has been shown to be fundamental in the efficient solution of a host of geometric and combinatorial problems, our algorithm leads directly to improved parallel solutions of many algorithms in terms of their work efficiency.
doi_str_mv 10.1006/jagm.1996.0824
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jagm_1996_0824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S019667749690824X</els_id><sourcerecordid>S019667749690824X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-4cc944d42f54edb68e244428adf130346d09fdea9a34b81a6ba3b8124e8537533</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwMmdgTbDji2uPqCofUiuQKLN1dc7FVZpUdoTof0-iIjamd8N7d_d7jN0KXgjO1f0Ot_tCGKMKrks4YxPBDc9LNdPnbMKFUbmazeCSXaW041yICsyEmVUXKVt4H1ygts_eMGLTUJOtu34Yjtmqa7u-aylbYR_Dd_ZOGN1naLfX7MJjk-jmV6fs43Gxnj_ny9enl_nDMndSVH0OzhmAGkpfAdUbpakEgFJj7YXkElTNja8JDUrYaIFqg3LQEkhXclZJOWXFaa-LXUqRvD3EsMd4tILbEdyO4HYEtyP4ELg7BQ6YHDY-YutC-kuVSoHQo02fbDQ8_xUo2jRW4KgOkVxv6y78d-EHDO1rZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>More Efficient Parallel Totally Monotone Matrix Searching</title><source>Alma/SFX Local Collection</source><creator>Bradford, Phillip G ; Fleischer, Rudolf ; Smid, Michiel</creator><creatorcontrib>Bradford, Phillip G ; Fleischer, Rudolf ; Smid, Michiel</creatorcontrib><description>We give a parallel algorithm for computing all row minima in a totally monotonen×nmatrix which is simpler and more work efficient than previous polylog-time algorithms. It runs inO(lgnlglgn) time doingO(nlgn)work on aCRCW PRAM, inO(lgn(lglgn)2) time doingO(nlgn)work on aCREW PRAM, and inO(lgnlgnlglgn)time doingO(nlgnlglgn)work on anEREW PRAM. Since finding the row minima of a totally monotone matrix has been shown to be fundamental in the efficient solution of a host of geometric and combinatorial problems, our algorithm leads directly to improved parallel solutions of many algorithms in terms of their work efficiency.</description><identifier>ISSN: 0196-6774</identifier><identifier>EISSN: 1090-2678</identifier><identifier>DOI: 10.1006/jagm.1996.0824</identifier><identifier>CODEN: JOALDV</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Journal of algorithms, 1997-05, Vol.23 (2), p.386-400</ispartof><rights>1997 Academic Press</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-4cc944d42f54edb68e244428adf130346d09fdea9a34b81a6ba3b8124e8537533</citedby><cites>FETCH-LOGICAL-c315t-4cc944d42f54edb68e244428adf130346d09fdea9a34b81a6ba3b8124e8537533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2664184$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bradford, Phillip G</creatorcontrib><creatorcontrib>Fleischer, Rudolf</creatorcontrib><creatorcontrib>Smid, Michiel</creatorcontrib><title>More Efficient Parallel Totally Monotone Matrix Searching</title><title>Journal of algorithms</title><description>We give a parallel algorithm for computing all row minima in a totally monotonen×nmatrix which is simpler and more work efficient than previous polylog-time algorithms. It runs inO(lgnlglgn) time doingO(nlgn)work on aCRCW PRAM, inO(lgn(lglgn)2) time doingO(nlgn)work on aCREW PRAM, and inO(lgnlgnlglgn)time doingO(nlgnlglgn)work on anEREW PRAM. Since finding the row minima of a totally monotone matrix has been shown to be fundamental in the efficient solution of a host of geometric and combinatorial problems, our algorithm leads directly to improved parallel solutions of many algorithms in terms of their work efficiency.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0196-6774</issn><issn>1090-2678</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwMmdgTbDji2uPqCofUiuQKLN1dc7FVZpUdoTof0-iIjamd8N7d_d7jN0KXgjO1f0Ot_tCGKMKrks4YxPBDc9LNdPnbMKFUbmazeCSXaW041yICsyEmVUXKVt4H1ygts_eMGLTUJOtu34Yjtmqa7u-aylbYR_Dd_ZOGN1naLfX7MJjk-jmV6fs43Gxnj_ny9enl_nDMndSVH0OzhmAGkpfAdUbpakEgFJj7YXkElTNja8JDUrYaIFqg3LQEkhXclZJOWXFaa-LXUqRvD3EsMd4tILbEdyO4HYEtyP4ELg7BQ6YHDY-YutC-kuVSoHQo02fbDQ8_xUo2jRW4KgOkVxv6y78d-EHDO1rZg</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>Bradford, Phillip G</creator><creator>Fleischer, Rudolf</creator><creator>Smid, Michiel</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970501</creationdate><title>More Efficient Parallel Totally Monotone Matrix Searching</title><author>Bradford, Phillip G ; Fleischer, Rudolf ; Smid, Michiel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-4cc944d42f54edb68e244428adf130346d09fdea9a34b81a6ba3b8124e8537533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradford, Phillip G</creatorcontrib><creatorcontrib>Fleischer, Rudolf</creatorcontrib><creatorcontrib>Smid, Michiel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradford, Phillip G</au><au>Fleischer, Rudolf</au><au>Smid, Michiel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>More Efficient Parallel Totally Monotone Matrix Searching</atitle><jtitle>Journal of algorithms</jtitle><date>1997-05-01</date><risdate>1997</risdate><volume>23</volume><issue>2</issue><spage>386</spage><epage>400</epage><pages>386-400</pages><issn>0196-6774</issn><eissn>1090-2678</eissn><coden>JOALDV</coden><abstract>We give a parallel algorithm for computing all row minima in a totally monotonen×nmatrix which is simpler and more work efficient than previous polylog-time algorithms. It runs inO(lgnlglgn) time doingO(nlgn)work on aCRCW PRAM, inO(lgn(lglgn)2) time doingO(nlgn)work on aCREW PRAM, and inO(lgnlgnlglgn)time doingO(nlgnlglgn)work on anEREW PRAM. Since finding the row minima of a totally monotone matrix has been shown to be fundamental in the efficient solution of a host of geometric and combinatorial problems, our algorithm leads directly to improved parallel solutions of many algorithms in terms of their work efficiency.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jagm.1996.0824</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-6774
ispartof Journal of algorithms, 1997-05, Vol.23 (2), p.386-400
issn 0196-6774
1090-2678
language eng
recordid cdi_crossref_primary_10_1006_jagm_1996_0824
source Alma/SFX Local Collection
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Theoretical computing
title More Efficient Parallel Totally Monotone Matrix Searching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=More%20Efficient%20Parallel%20Totally%20Monotone%20Matrix%20Searching&rft.jtitle=Journal%20of%20algorithms&rft.au=Bradford,%20Phillip%20G&rft.date=1997-05-01&rft.volume=23&rft.issue=2&rft.spage=386&rft.epage=400&rft.pages=386-400&rft.issn=0196-6774&rft.eissn=1090-2678&rft.coden=JOALDV&rft_id=info:doi/10.1006/jagm.1996.0824&rft_dat=%3Celsevier_cross%3ES019667749690824X%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S019667749690824X&rfr_iscdi=true