Sublinear-Time Parallel Algorithms for Matching and Related Problems

This paper presents the first sublinear-time deterministic parallel algorithms for bipartite matching and several related problems, including maximal node-disjoint paths, depth-first search, and flows in zero-one networks. Our results are based on a better understanding of the combinatorial structur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algorithms 1993-03, Vol.14 (2), p.180-213
Hauptverfasser: Goldberg, A.V., Plotkin, S.A., Vaidya, P.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 2
container_start_page 180
container_title Journal of algorithms
container_volume 14
creator Goldberg, A.V.
Plotkin, S.A.
Vaidya, P.M.
description This paper presents the first sublinear-time deterministic parallel algorithms for bipartite matching and several related problems, including maximal node-disjoint paths, depth-first search, and flows in zero-one networks. Our results are based on a better understanding of the combinatorial structure of the above problems. which leads to new algorithmic techniques. In particular, we show how to use maximal matching to extend, in parallel, a current set of node-disjoint paths and how to take advantage of the parallelism that arises when a large number of nodes are "active" during an execution of a push-relabel network flow algorithm. We also show how to apply our techniques to design parallel algorithms for the weighted versions of the above problems. In particular, we present sublinear-time deterministic parallel algorithms for finding a minimum-weight bipartite matching and for finding a minimum-cost flow in a network with zero-one capacities, if the weights are polynomially bounded integers.
doi_str_mv 10.1006/jagm.1993.1009
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jagm_1993_1009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196677483710096</els_id><sourcerecordid>S0196677483710096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-758f76bb669cdc2b6fa478081e0443e3310be96e24a88c721dde35c3895d1f9e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKtXz3vwujXZZPNxLPUTKhat55BNJm1Kdrckq-C_t0vFm6fhhfeZGR6ErgmeEYz57c5s2hlRio5RnaAJwQqXFRfyFE0wUbzkQrBzdJHzDmNCaqYm6O79s4mhA5PKdWihWJlkYoRYzOOmT2HYtrnwfSpezGC3odsUpnPFG0QzgCtWqW8itPkSnXkTM1z9zin6eLhfL57K5evj82K-LC0lYihFLb3gTcO5ss5WDfeGCYklAcwYBUoJbkBxqJiR0oqKOAe0tlSq2hGvgE7R7LjXpj7nBF7vU2hN-tYE69GBHh3o0cEY1QG4OQJ7k62JPpnOhvxHMVFTxfmhJo81ODz_FSDpbAN0FlxIYAft-vDfhR9wKG9m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sublinear-Time Parallel Algorithms for Matching and Related Problems</title><source>Alma/SFX Local Collection</source><creator>Goldberg, A.V. ; Plotkin, S.A. ; Vaidya, P.M.</creator><creatorcontrib>Goldberg, A.V. ; Plotkin, S.A. ; Vaidya, P.M.</creatorcontrib><description>This paper presents the first sublinear-time deterministic parallel algorithms for bipartite matching and several related problems, including maximal node-disjoint paths, depth-first search, and flows in zero-one networks. Our results are based on a better understanding of the combinatorial structure of the above problems. which leads to new algorithmic techniques. In particular, we show how to use maximal matching to extend, in parallel, a current set of node-disjoint paths and how to take advantage of the parallelism that arises when a large number of nodes are "active" during an execution of a push-relabel network flow algorithm. We also show how to apply our techniques to design parallel algorithms for the weighted versions of the above problems. In particular, we present sublinear-time deterministic parallel algorithms for finding a minimum-weight bipartite matching and for finding a minimum-cost flow in a network with zero-one capacities, if the weights are polynomially bounded integers.</description><identifier>ISSN: 0196-6774</identifier><identifier>EISSN: 1090-2678</identifier><identifier>DOI: 10.1006/jagm.1993.1009</identifier><identifier>CODEN: JOALDV</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Journal of algorithms, 1993-03, Vol.14 (2), p.180-213</ispartof><rights>1993 Academic Press</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-758f76bb669cdc2b6fa478081e0443e3310be96e24a88c721dde35c3895d1f9e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4753966$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldberg, A.V.</creatorcontrib><creatorcontrib>Plotkin, S.A.</creatorcontrib><creatorcontrib>Vaidya, P.M.</creatorcontrib><title>Sublinear-Time Parallel Algorithms for Matching and Related Problems</title><title>Journal of algorithms</title><description>This paper presents the first sublinear-time deterministic parallel algorithms for bipartite matching and several related problems, including maximal node-disjoint paths, depth-first search, and flows in zero-one networks. Our results are based on a better understanding of the combinatorial structure of the above problems. which leads to new algorithmic techniques. In particular, we show how to use maximal matching to extend, in parallel, a current set of node-disjoint paths and how to take advantage of the parallelism that arises when a large number of nodes are "active" during an execution of a push-relabel network flow algorithm. We also show how to apply our techniques to design parallel algorithms for the weighted versions of the above problems. In particular, we present sublinear-time deterministic parallel algorithms for finding a minimum-weight bipartite matching and for finding a minimum-cost flow in a network with zero-one capacities, if the weights are polynomially bounded integers.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0196-6774</issn><issn>1090-2678</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKtXz3vwujXZZPNxLPUTKhat55BNJm1Kdrckq-C_t0vFm6fhhfeZGR6ErgmeEYz57c5s2hlRio5RnaAJwQqXFRfyFE0wUbzkQrBzdJHzDmNCaqYm6O79s4mhA5PKdWihWJlkYoRYzOOmT2HYtrnwfSpezGC3odsUpnPFG0QzgCtWqW8itPkSnXkTM1z9zin6eLhfL57K5evj82K-LC0lYihFLb3gTcO5ss5WDfeGCYklAcwYBUoJbkBxqJiR0oqKOAe0tlSq2hGvgE7R7LjXpj7nBF7vU2hN-tYE69GBHh3o0cEY1QG4OQJ7k62JPpnOhvxHMVFTxfmhJo81ODz_FSDpbAN0FlxIYAft-vDfhR9wKG9m</recordid><startdate>19930301</startdate><enddate>19930301</enddate><creator>Goldberg, A.V.</creator><creator>Plotkin, S.A.</creator><creator>Vaidya, P.M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930301</creationdate><title>Sublinear-Time Parallel Algorithms for Matching and Related Problems</title><author>Goldberg, A.V. ; Plotkin, S.A. ; Vaidya, P.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-758f76bb669cdc2b6fa478081e0443e3310be96e24a88c721dde35c3895d1f9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldberg, A.V.</creatorcontrib><creatorcontrib>Plotkin, S.A.</creatorcontrib><creatorcontrib>Vaidya, P.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldberg, A.V.</au><au>Plotkin, S.A.</au><au>Vaidya, P.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sublinear-Time Parallel Algorithms for Matching and Related Problems</atitle><jtitle>Journal of algorithms</jtitle><date>1993-03-01</date><risdate>1993</risdate><volume>14</volume><issue>2</issue><spage>180</spage><epage>213</epage><pages>180-213</pages><issn>0196-6774</issn><eissn>1090-2678</eissn><coden>JOALDV</coden><abstract>This paper presents the first sublinear-time deterministic parallel algorithms for bipartite matching and several related problems, including maximal node-disjoint paths, depth-first search, and flows in zero-one networks. Our results are based on a better understanding of the combinatorial structure of the above problems. which leads to new algorithmic techniques. In particular, we show how to use maximal matching to extend, in parallel, a current set of node-disjoint paths and how to take advantage of the parallelism that arises when a large number of nodes are "active" during an execution of a push-relabel network flow algorithm. We also show how to apply our techniques to design parallel algorithms for the weighted versions of the above problems. In particular, we present sublinear-time deterministic parallel algorithms for finding a minimum-weight bipartite matching and for finding a minimum-cost flow in a network with zero-one capacities, if the weights are polynomially bounded integers.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jagm.1993.1009</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-6774
ispartof Journal of algorithms, 1993-03, Vol.14 (2), p.180-213
issn 0196-6774
1090-2678
language eng
recordid cdi_crossref_primary_10_1006_jagm_1993_1009
source Alma/SFX Local Collection
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Theoretical computing
title Sublinear-Time Parallel Algorithms for Matching and Related Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sublinear-Time%20Parallel%20Algorithms%20for%20Matching%20and%20Related%20Problems&rft.jtitle=Journal%20of%20algorithms&rft.au=Goldberg,%20A.V.&rft.date=1993-03-01&rft.volume=14&rft.issue=2&rft.spage=180&rft.epage=213&rft.pages=180-213&rft.issn=0196-6774&rft.eissn=1090-2678&rft.coden=JOALDV&rft_id=info:doi/10.1006/jagm.1993.1009&rft_dat=%3Celsevier_cross%3ES0196677483710096%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0196677483710096&rfr_iscdi=true