Identities on Units of Algebraic Algebras
Let A be an algebraic algebra over an infinite field K and let U(A) be its group of units. We prove a stronger version of Hartley's conjecture for A, namely, if a Laurent polynomial identity (LPI, for short) f=0 is satisfied in U(A), then A satisfies a polynomial identity (PI). We also show tha...
Gespeichert in:
Veröffentlicht in: | Journal of algebra 2002-04, Vol.250 (2), p.638-646 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 646 |
---|---|
container_issue | 2 |
container_start_page | 638 |
container_title | Journal of algebra |
container_volume | 250 |
creator | Dokuchaev, M.A. Gonçalves, J.Z. |
description | Let A be an algebraic algebra over an infinite field K and let U(A) be its group of units. We prove a stronger version of Hartley's conjecture for A, namely, if a Laurent polynomial identity (LPI, for short) f=0 is satisfied in U(A), then A satisfies a polynomial identity (PI). We also show that if A is non-commutative, then A is a PI-ring, provided f=0 is satisfied by the non-central units of A. In particular, A is locally finite and, thus, the Kurosh problem has a positive answer for K-algebras whose unit group is LPI. Moreover, f=0 holds in U(A) if and only if the same identity is satisfied in A. The last fact remains true for generalized Laurent polynomial identities, provided that A is locally finite. |
doi_str_mv | 10.1006/jabr.2001.9071 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jabr_2001_9071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021869301990714</els_id><sourcerecordid>S0021869301990714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-96cae9bacbfab35839b7ef279144cefb66bee31c9e44606726fab9e14d49706d3</originalsourceid><addsrcrecordid>eNp1j89LxDAQhYMoWFevnnv10DqTpmlyXBZ_LCx4ccFbSNKJZFlbSYrgf2_L6tHTvMP7HvMxdotQI4C8P1iXag6AtYYOz1iBoKHiUr6dswKAY6Wkbi7ZVc6HuYWtUAW72_Y0THGKlMtxKPdDnOYQyvXxnVyy0f-lfM0ugj1muvm9K7Z_fHjdPFe7l6ftZr2rPG_VVGnpLWlnvQvWNa1qtOso8E6jEJ6Ck9IRNeg1CSFBdlzOPU0oeqE7kH2zYvVp16cx50TBfKb4YdO3QTCLqFlEzSJqFtEZUCeA5q--IiWTfaTBUx8T-cn0Y_wP_QEkVFmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identities on Units of Algebraic Algebras</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dokuchaev, M.A. ; Gonçalves, J.Z.</creator><creatorcontrib>Dokuchaev, M.A. ; Gonçalves, J.Z.</creatorcontrib><description>Let A be an algebraic algebra over an infinite field K and let U(A) be its group of units. We prove a stronger version of Hartley's conjecture for A, namely, if a Laurent polynomial identity (LPI, for short) f=0 is satisfied in U(A), then A satisfies a polynomial identity (PI). We also show that if A is non-commutative, then A is a PI-ring, provided f=0 is satisfied by the non-central units of A. In particular, A is locally finite and, thus, the Kurosh problem has a positive answer for K-algebras whose unit group is LPI. Moreover, f=0 holds in U(A) if and only if the same identity is satisfied in A. The last fact remains true for generalized Laurent polynomial identities, provided that A is locally finite.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1006/jabr.2001.9071</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>algebras ; Laurent polynomial identity ; units</subject><ispartof>Journal of algebra, 2002-04, Vol.250 (2), p.638-646</ispartof><rights>2002 Elsevier Science (USA)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-96cae9bacbfab35839b7ef279144cefb66bee31c9e44606726fab9e14d49706d3</citedby><cites>FETCH-LOGICAL-c258t-96cae9bacbfab35839b7ef279144cefb66bee31c9e44606726fab9e14d49706d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021869301990714$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Dokuchaev, M.A.</creatorcontrib><creatorcontrib>Gonçalves, J.Z.</creatorcontrib><title>Identities on Units of Algebraic Algebras</title><title>Journal of algebra</title><description>Let A be an algebraic algebra over an infinite field K and let U(A) be its group of units. We prove a stronger version of Hartley's conjecture for A, namely, if a Laurent polynomial identity (LPI, for short) f=0 is satisfied in U(A), then A satisfies a polynomial identity (PI). We also show that if A is non-commutative, then A is a PI-ring, provided f=0 is satisfied by the non-central units of A. In particular, A is locally finite and, thus, the Kurosh problem has a positive answer for K-algebras whose unit group is LPI. Moreover, f=0 holds in U(A) if and only if the same identity is satisfied in A. The last fact remains true for generalized Laurent polynomial identities, provided that A is locally finite.</description><subject>algebras</subject><subject>Laurent polynomial identity</subject><subject>units</subject><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1j89LxDAQhYMoWFevnnv10DqTpmlyXBZ_LCx4ccFbSNKJZFlbSYrgf2_L6tHTvMP7HvMxdotQI4C8P1iXag6AtYYOz1iBoKHiUr6dswKAY6Wkbi7ZVc6HuYWtUAW72_Y0THGKlMtxKPdDnOYQyvXxnVyy0f-lfM0ugj1muvm9K7Z_fHjdPFe7l6ftZr2rPG_VVGnpLWlnvQvWNa1qtOso8E6jEJ6Ck9IRNeg1CSFBdlzOPU0oeqE7kH2zYvVp16cx50TBfKb4YdO3QTCLqFlEzSJqFtEZUCeA5q--IiWTfaTBUx8T-cn0Y_wP_QEkVFmA</recordid><startdate>20020415</startdate><enddate>20020415</enddate><creator>Dokuchaev, M.A.</creator><creator>Gonçalves, J.Z.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020415</creationdate><title>Identities on Units of Algebraic Algebras</title><author>Dokuchaev, M.A. ; Gonçalves, J.Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-96cae9bacbfab35839b7ef279144cefb66bee31c9e44606726fab9e14d49706d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>algebras</topic><topic>Laurent polynomial identity</topic><topic>units</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dokuchaev, M.A.</creatorcontrib><creatorcontrib>Gonçalves, J.Z.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dokuchaev, M.A.</au><au>Gonçalves, J.Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identities on Units of Algebraic Algebras</atitle><jtitle>Journal of algebra</jtitle><date>2002-04-15</date><risdate>2002</risdate><volume>250</volume><issue>2</issue><spage>638</spage><epage>646</epage><pages>638-646</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>Let A be an algebraic algebra over an infinite field K and let U(A) be its group of units. We prove a stronger version of Hartley's conjecture for A, namely, if a Laurent polynomial identity (LPI, for short) f=0 is satisfied in U(A), then A satisfies a polynomial identity (PI). We also show that if A is non-commutative, then A is a PI-ring, provided f=0 is satisfied by the non-central units of A. In particular, A is locally finite and, thus, the Kurosh problem has a positive answer for K-algebras whose unit group is LPI. Moreover, f=0 holds in U(A) if and only if the same identity is satisfied in A. The last fact remains true for generalized Laurent polynomial identities, provided that A is locally finite.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jabr.2001.9071</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8693 |
ispartof | Journal of algebra, 2002-04, Vol.250 (2), p.638-646 |
issn | 0021-8693 1090-266X |
language | eng |
recordid | cdi_crossref_primary_10_1006_jabr_2001_9071 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | algebras Laurent polynomial identity units |
title | Identities on Units of Algebraic Algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identities%20on%20Units%20of%20Algebraic%20Algebras&rft.jtitle=Journal%20of%20algebra&rft.au=Dokuchaev,%20M.A.&rft.date=2002-04-15&rft.volume=250&rft.issue=2&rft.spage=638&rft.epage=646&rft.pages=638-646&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1006/jabr.2001.9071&rft_dat=%3Celsevier_cross%3ES0021869301990714%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021869301990714&rfr_iscdi=true |