A Generalization of the Terwilliger Algebra

P. M. Terwilliger (1992, J. Algebraic Combin.1, 363–388) considered the C-algebra generated by a given Bose Mesner algebra M and the associated dual Bose Mesner algebra M*. This algebra is now known as the Terwilliger algebra and is usually denoted by T. Terwilliger showed that each vanishing inters...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 2000-11, Vol.233 (1), p.213-252
1. Verfasser: Egge, Eric S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue 1
container_start_page 213
container_title Journal of algebra
container_volume 233
creator Egge, Eric S.
description P. M. Terwilliger (1992, J. Algebraic Combin.1, 363–388) considered the C-algebra generated by a given Bose Mesner algebra M and the associated dual Bose Mesner algebra M*. This algebra is now known as the Terwilliger algebra and is usually denoted by T. Terwilliger showed that each vanishing intersection number and Krein parameter of M gives rise to a relation on certain generators of T. These relations determine much of the structure of T, thought not all of it in general. To illuminate the role these relations play, we consider a certain generalization T of T. To go from T to T, we replace M and M* with a pair of dual character algebras C and C*. We define T by generators and relations; intuitively T is the associative C-algebra with identity generated by C and C* subject to the analogues of Terwilliger's relations. T is infinite dimensional and noncommutative in general. We construct an irreducible T-module which we call the primary module; the dimension of this module is the same as that of C and C*. We find two bases of the primary module; one diagonalizes C and the other diagonalizes C*. We compute the action of the generators of T on these bases. We show T is a direct sum of two sided ideals T0 and T1 with T0 isomorphic to a full matrix algebra. We show that the irreducible module associated with T0 is isomorphic to the primary module. We compute the central primitive idempotent of T associated with T0 in terms of the generators of T.
doi_str_mv 10.1006/jabr.2000.8420
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jabr_2000_8420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021869300984205</els_id><sourcerecordid>S0021869300984205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-e5543e3018d0c0bcb3938068e9f8d1ab7917feade4cd394532ccab7324fe1b533</originalsourceid><addsrcrecordid>eNp1j0tLw0AUhQdRMFa3rrOXxDuPTCfLULQVCm4quBvmcadOiYnMBEV_vQ116-rAge9wPkJuKdQUQN4fjE01A4BaCQZnpKDQQsWkfD0nBQCjlZItvyRXOR8AKG2EKshdV65xwGT6-GOmOA7lGMrpDcsdpq_Y93GPqez6PdpkrslFMH3Gm79ckJfHh91qU22f10-rbls5zuRUYdMIjhyo8uDAOstbrkAqbIPy1NhlS5cBjUfhPG9Fw5lzx5YzEZDahvMFqU-7Lo05Jwz6I8V3k741BT2r6llVz6p6Vj0C6gTg8dVnxKSzizg49DGhm7Qf43_oL6DvWc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Generalization of the Terwilliger Algebra</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Egge, Eric S.</creator><creatorcontrib>Egge, Eric S.</creatorcontrib><description>P. M. Terwilliger (1992, J. Algebraic Combin.1, 363–388) considered the C-algebra generated by a given Bose Mesner algebra M and the associated dual Bose Mesner algebra M*. This algebra is now known as the Terwilliger algebra and is usually denoted by T. Terwilliger showed that each vanishing intersection number and Krein parameter of M gives rise to a relation on certain generators of T. These relations determine much of the structure of T, thought not all of it in general. To illuminate the role these relations play, we consider a certain generalization T of T. To go from T to T, we replace M and M* with a pair of dual character algebras C and C*. We define T by generators and relations; intuitively T is the associative C-algebra with identity generated by C and C* subject to the analogues of Terwilliger's relations. T is infinite dimensional and noncommutative in general. We construct an irreducible T-module which we call the primary module; the dimension of this module is the same as that of C and C*. We find two bases of the primary module; one diagonalizes C and the other diagonalizes C*. We compute the action of the generators of T on these bases. We show T is a direct sum of two sided ideals T0 and T1 with T0 isomorphic to a full matrix algebra. We show that the irreducible module associated with T0 is isomorphic to the primary module. We compute the central primitive idempotent of T associated with T0 in terms of the generators of T.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1006/jabr.2000.8420</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of algebra, 2000-11, Vol.233 (1), p.213-252</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-e5543e3018d0c0bcb3938068e9f8d1ab7917feade4cd394532ccab7324fe1b533</citedby><cites>FETCH-LOGICAL-c326t-e5543e3018d0c0bcb3938068e9f8d1ab7917feade4cd394532ccab7324fe1b533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jabr.2000.8420$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Egge, Eric S.</creatorcontrib><title>A Generalization of the Terwilliger Algebra</title><title>Journal of algebra</title><description>P. M. Terwilliger (1992, J. Algebraic Combin.1, 363–388) considered the C-algebra generated by a given Bose Mesner algebra M and the associated dual Bose Mesner algebra M*. This algebra is now known as the Terwilliger algebra and is usually denoted by T. Terwilliger showed that each vanishing intersection number and Krein parameter of M gives rise to a relation on certain generators of T. These relations determine much of the structure of T, thought not all of it in general. To illuminate the role these relations play, we consider a certain generalization T of T. To go from T to T, we replace M and M* with a pair of dual character algebras C and C*. We define T by generators and relations; intuitively T is the associative C-algebra with identity generated by C and C* subject to the analogues of Terwilliger's relations. T is infinite dimensional and noncommutative in general. We construct an irreducible T-module which we call the primary module; the dimension of this module is the same as that of C and C*. We find two bases of the primary module; one diagonalizes C and the other diagonalizes C*. We compute the action of the generators of T on these bases. We show T is a direct sum of two sided ideals T0 and T1 with T0 isomorphic to a full matrix algebra. We show that the irreducible module associated with T0 is isomorphic to the primary module. We compute the central primitive idempotent of T associated with T0 in terms of the generators of T.</description><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1j0tLw0AUhQdRMFa3rrOXxDuPTCfLULQVCm4quBvmcadOiYnMBEV_vQ116-rAge9wPkJuKdQUQN4fjE01A4BaCQZnpKDQQsWkfD0nBQCjlZItvyRXOR8AKG2EKshdV65xwGT6-GOmOA7lGMrpDcsdpq_Y93GPqez6PdpkrslFMH3Gm79ckJfHh91qU22f10-rbls5zuRUYdMIjhyo8uDAOstbrkAqbIPy1NhlS5cBjUfhPG9Fw5lzx5YzEZDahvMFqU-7Lo05Jwz6I8V3k741BT2r6llVz6p6Vj0C6gTg8dVnxKSzizg49DGhm7Qf43_oL6DvWc8</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Egge, Eric S.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001101</creationdate><title>A Generalization of the Terwilliger Algebra</title><author>Egge, Eric S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-e5543e3018d0c0bcb3938068e9f8d1ab7917feade4cd394532ccab7324fe1b533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egge, Eric S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egge, Eric S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generalization of the Terwilliger Algebra</atitle><jtitle>Journal of algebra</jtitle><date>2000-11-01</date><risdate>2000</risdate><volume>233</volume><issue>1</issue><spage>213</spage><epage>252</epage><pages>213-252</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>P. M. Terwilliger (1992, J. Algebraic Combin.1, 363–388) considered the C-algebra generated by a given Bose Mesner algebra M and the associated dual Bose Mesner algebra M*. This algebra is now known as the Terwilliger algebra and is usually denoted by T. Terwilliger showed that each vanishing intersection number and Krein parameter of M gives rise to a relation on certain generators of T. These relations determine much of the structure of T, thought not all of it in general. To illuminate the role these relations play, we consider a certain generalization T of T. To go from T to T, we replace M and M* with a pair of dual character algebras C and C*. We define T by generators and relations; intuitively T is the associative C-algebra with identity generated by C and C* subject to the analogues of Terwilliger's relations. T is infinite dimensional and noncommutative in general. We construct an irreducible T-module which we call the primary module; the dimension of this module is the same as that of C and C*. We find two bases of the primary module; one diagonalizes C and the other diagonalizes C*. We compute the action of the generators of T on these bases. We show T is a direct sum of two sided ideals T0 and T1 with T0 isomorphic to a full matrix algebra. We show that the irreducible module associated with T0 is isomorphic to the primary module. We compute the central primitive idempotent of T associated with T0 in terms of the generators of T.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jabr.2000.8420</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8693
ispartof Journal of algebra, 2000-11, Vol.233 (1), p.213-252
issn 0021-8693
1090-266X
language eng
recordid cdi_crossref_primary_10_1006_jabr_2000_8420
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title A Generalization of the Terwilliger Algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generalization%20of%20the%20Terwilliger%20Algebra&rft.jtitle=Journal%20of%20algebra&rft.au=Egge,%20Eric%20S.&rft.date=2000-11-01&rft.volume=233&rft.issue=1&rft.spage=213&rft.epage=252&rft.pages=213-252&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1006/jabr.2000.8420&rft_dat=%3Celsevier_cross%3ES0021869300984205%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021869300984205&rfr_iscdi=true