Mininjective Rings

A ringRis called right mininjective if every isomorphism between simple right ideals is given by left multiplication by an element ofR. These rings are shown to be Morita invariant. IfRis commutative it is shown thatRis mininjective if and only if it has a squarefree socle, and that every image ofRi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 1997-01, Vol.187 (2), p.548-578
Hauptverfasser: Nicholson, W.K., Yousif, M.F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 578
container_issue 2
container_start_page 548
container_title Journal of algebra
container_volume 187
creator Nicholson, W.K.
Yousif, M.F.
description A ringRis called right mininjective if every isomorphism between simple right ideals is given by left multiplication by an element ofR. These rings are shown to be Morita invariant. IfRis commutative it is shown thatRis mininjective if and only if it has a squarefree socle, and that every image ofRis mininjective if and only ifRhas a distributive lattice of ideals. IfRis a semiperfect, right mininjective ring in whicheRhas nonzero right socle for each primitive idempotente, it is shown thatRadmits a Nakayama permutation of its basic idempotents, and that its two socles are equal if every simple left ideal is an annihilator. This extends well known results on pseudo- and quasi-Frobenius rings.
doi_str_mv 10.1006/jabr.1996.6796
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jabr_1996_6796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021869396967964</els_id><sourcerecordid>S0021869396967964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-de33de609007088fb7c371e02f163749bd170ec71d8ee46e495e36b5e66b4a0d3</originalsourceid><addsrcrecordid>eNp1z8FKxDAQgOEgCtbViwfPvkDqTNNOkqMs6gorwrKCt9AmU0nRriTLgm9vy3r1NKd_Zj4hbhBKBKC7oe1SidZSSdrSiSgQLMiK6P1UFAAVSkNWnYuLnAcAxKY2hbh-iWMcB_b7eODbTRw_8qU469vPzFd_cyHeHh-2y5Vcvz49L-_X0leN2cvASgWm6QZoMKbvtFcaGaoeSenadgE1sNcYDHNNXNuGFXUNE3V1C0EtRHnc69Mu58S9-07xq00_DsHNIjeL3Cxys2gKzDHg6atD5OSyjzx6DjFNABd28b_0F9tIUMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mininjective Rings</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nicholson, W.K. ; Yousif, M.F.</creator><creatorcontrib>Nicholson, W.K. ; Yousif, M.F.</creatorcontrib><description>A ringRis called right mininjective if every isomorphism between simple right ideals is given by left multiplication by an element ofR. These rings are shown to be Morita invariant. IfRis commutative it is shown thatRis mininjective if and only if it has a squarefree socle, and that every image ofRis mininjective if and only ifRhas a distributive lattice of ideals. IfRis a semiperfect, right mininjective ring in whicheRhas nonzero right socle for each primitive idempotente, it is shown thatRadmits a Nakayama permutation of its basic idempotents, and that its two socles are equal if every simple left ideal is an annihilator. This extends well known results on pseudo- and quasi-Frobenius rings.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1006/jabr.1996.6796</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of algebra, 1997-01, Vol.187 (2), p.548-578</ispartof><rights>1997 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-de33de609007088fb7c371e02f163749bd170ec71d8ee46e495e36b5e66b4a0d3</citedby><cites>FETCH-LOGICAL-c258t-de33de609007088fb7c371e02f163749bd170ec71d8ee46e495e36b5e66b4a0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jabr.1996.6796$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nicholson, W.K.</creatorcontrib><creatorcontrib>Yousif, M.F.</creatorcontrib><title>Mininjective Rings</title><title>Journal of algebra</title><description>A ringRis called right mininjective if every isomorphism between simple right ideals is given by left multiplication by an element ofR. These rings are shown to be Morita invariant. IfRis commutative it is shown thatRis mininjective if and only if it has a squarefree socle, and that every image ofRis mininjective if and only ifRhas a distributive lattice of ideals. IfRis a semiperfect, right mininjective ring in whicheRhas nonzero right socle for each primitive idempotente, it is shown thatRadmits a Nakayama permutation of its basic idempotents, and that its two socles are equal if every simple left ideal is an annihilator. This extends well known results on pseudo- and quasi-Frobenius rings.</description><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1z8FKxDAQgOEgCtbViwfPvkDqTNNOkqMs6gorwrKCt9AmU0nRriTLgm9vy3r1NKd_Zj4hbhBKBKC7oe1SidZSSdrSiSgQLMiK6P1UFAAVSkNWnYuLnAcAxKY2hbh-iWMcB_b7eODbTRw_8qU469vPzFd_cyHeHh-2y5Vcvz49L-_X0leN2cvASgWm6QZoMKbvtFcaGaoeSenadgE1sNcYDHNNXNuGFXUNE3V1C0EtRHnc69Mu58S9-07xq00_DsHNIjeL3Cxys2gKzDHg6atD5OSyjzx6DjFNABd28b_0F9tIUMM</recordid><startdate>19970115</startdate><enddate>19970115</enddate><creator>Nicholson, W.K.</creator><creator>Yousif, M.F.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970115</creationdate><title>Mininjective Rings</title><author>Nicholson, W.K. ; Yousif, M.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-de33de609007088fb7c371e02f163749bd170ec71d8ee46e495e36b5e66b4a0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicholson, W.K.</creatorcontrib><creatorcontrib>Yousif, M.F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicholson, W.K.</au><au>Yousif, M.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mininjective Rings</atitle><jtitle>Journal of algebra</jtitle><date>1997-01-15</date><risdate>1997</risdate><volume>187</volume><issue>2</issue><spage>548</spage><epage>578</epage><pages>548-578</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>A ringRis called right mininjective if every isomorphism between simple right ideals is given by left multiplication by an element ofR. These rings are shown to be Morita invariant. IfRis commutative it is shown thatRis mininjective if and only if it has a squarefree socle, and that every image ofRis mininjective if and only ifRhas a distributive lattice of ideals. IfRis a semiperfect, right mininjective ring in whicheRhas nonzero right socle for each primitive idempotente, it is shown thatRadmits a Nakayama permutation of its basic idempotents, and that its two socles are equal if every simple left ideal is an annihilator. This extends well known results on pseudo- and quasi-Frobenius rings.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jabr.1996.6796</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8693
ispartof Journal of algebra, 1997-01, Vol.187 (2), p.548-578
issn 0021-8693
1090-266X
language eng
recordid cdi_crossref_primary_10_1006_jabr_1996_6796
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
title Mininjective Rings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mininjective%20Rings&rft.jtitle=Journal%20of%20algebra&rft.au=Nicholson,%20W.K.&rft.date=1997-01-15&rft.volume=187&rft.issue=2&rft.spage=548&rft.epage=578&rft.pages=548-578&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1006/jabr.1996.6796&rft_dat=%3Celsevier_cross%3ES0021869396967964%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021869396967964&rfr_iscdi=true