Apple tasting

In the standard on-line model the learning algorithm tries to minimizethe total number of mistakes made in a series of trials. On each trial the learner sees an instance, makes a prediction of its classification, then finds out the correct classification. We define a natural variant of this model (“...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and computation 2000, Vol.161 (2), p.85-139
Hauptverfasser: Helmbold, David P., Littlestone, Nicholas, Long, Philip M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 2
container_start_page 85
container_title Information and computation
container_volume 161
creator Helmbold, David P.
Littlestone, Nicholas
Long, Philip M.
description In the standard on-line model the learning algorithm tries to minimizethe total number of mistakes made in a series of trials. On each trial the learner sees an instance, makes a prediction of its classification, then finds out the correct classification. We define a natural variant of this model (“apple tasting”) where u • the classes are interpreted as the good and bad instances, • the prediction is interpreted as accepting or rejecting the instance,and • the learner gets feedback only when the instance is accepted. We use two transformations to relate the apple tasting model to an enhanced standard model where false acceptances are counted separately from false rejections. We apply our results to obtain a good general-purpose apple tasting algorithm as well as nearly optimal apple tasting algorithms for a variety of standard classes, such as conjunctions and disjunctions of n boolean variables. We also present and analyze a simpler transformation useful when the instances are drawn at random rather than selected by an adversary.
doi_str_mv 10.1006/inco.2000.2870
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_inco_2000_2870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890540100928700</els_id><sourcerecordid>S0890540100928700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-2dd7152b774ea79e8b9a13a2e0af20a38e61f0317bd3b3fca1f033fea95aef893</originalsourceid><addsrcrecordid>eNp1j0FLxDAQRoMoWNe9evbgtXUmaZr2uCzqCgte9Bym6UQitS1JEfz3tqzgydPMwLxv5glxg1AgQHUfBjcWEgAKWRs4ExlCA7msNJ6LDOql1yXgpbhK6QMAUZdVJra7aer5dqY0h-H9Wlx46hNvf-tGvD0-vO4P-fHl6Xm_O-ZOaT3nsusMatkaUzKZhuu2IVQkGchLIFVzhR4UmrZTrfKO1kl5pkYT-7pRG1Gccl0cU4rs7RTDJ8Vvi2BXGbvK2FXGrjILcHcCJkqOeh9pcCH9UVpiqdbc-rTGy_NfgaNNLvDguAuR3Wy7Mfx34Qf-21uk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Apple tasting</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Helmbold, David P. ; Littlestone, Nicholas ; Long, Philip M.</creator><creatorcontrib>Helmbold, David P. ; Littlestone, Nicholas ; Long, Philip M.</creatorcontrib><description>In the standard on-line model the learning algorithm tries to minimizethe total number of mistakes made in a series of trials. On each trial the learner sees an instance, makes a prediction of its classification, then finds out the correct classification. We define a natural variant of this model (“apple tasting”) where u • the classes are interpreted as the good and bad instances, • the prediction is interpreted as accepting or rejecting the instance,and • the learner gets feedback only when the instance is accepted. We use two transformations to relate the apple tasting model to an enhanced standard model where false acceptances are counted separately from false rejections. We apply our results to obtain a good general-purpose apple tasting algorithm as well as nearly optimal apple tasting algorithms for a variety of standard classes, such as conjunctions and disjunctions of n boolean variables. We also present and analyze a simpler transformation useful when the instances are drawn at random rather than selected by an adversary.</description><identifier>ISSN: 0890-5401</identifier><identifier>EISSN: 1090-2651</identifier><identifier>DOI: 10.1006/inco.2000.2870</identifier><identifier>CODEN: INFCEC</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Theoretical computing</subject><ispartof>Information and computation, 2000, Vol.161 (2), p.85-139</ispartof><rights>2000 Academic Press</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-2dd7152b774ea79e8b9a13a2e0af20a38e61f0317bd3b3fca1f033fea95aef893</citedby><cites>FETCH-LOGICAL-c355t-2dd7152b774ea79e8b9a13a2e0af20a38e61f0317bd3b3fca1f033fea95aef893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0890540100928700$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1521439$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Helmbold, David P.</creatorcontrib><creatorcontrib>Littlestone, Nicholas</creatorcontrib><creatorcontrib>Long, Philip M.</creatorcontrib><title>Apple tasting</title><title>Information and computation</title><description>In the standard on-line model the learning algorithm tries to minimizethe total number of mistakes made in a series of trials. On each trial the learner sees an instance, makes a prediction of its classification, then finds out the correct classification. We define a natural variant of this model (“apple tasting”) where u • the classes are interpreted as the good and bad instances, • the prediction is interpreted as accepting or rejecting the instance,and • the learner gets feedback only when the instance is accepted. We use two transformations to relate the apple tasting model to an enhanced standard model where false acceptances are counted separately from false rejections. We apply our results to obtain a good general-purpose apple tasting algorithm as well as nearly optimal apple tasting algorithms for a variety of standard classes, such as conjunctions and disjunctions of n boolean variables. We also present and analyze a simpler transformation useful when the instances are drawn at random rather than selected by an adversary.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Theoretical computing</subject><issn>0890-5401</issn><issn>1090-2651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLxDAQRoMoWNe9evbgtXUmaZr2uCzqCgte9Bym6UQitS1JEfz3tqzgydPMwLxv5glxg1AgQHUfBjcWEgAKWRs4ExlCA7msNJ6LDOql1yXgpbhK6QMAUZdVJra7aer5dqY0h-H9Wlx46hNvf-tGvD0-vO4P-fHl6Xm_O-ZOaT3nsusMatkaUzKZhuu2IVQkGchLIFVzhR4UmrZTrfKO1kl5pkYT-7pRG1Gccl0cU4rs7RTDJ8Vvi2BXGbvK2FXGrjILcHcCJkqOeh9pcCH9UVpiqdbc-rTGy_NfgaNNLvDguAuR3Wy7Mfx34Qf-21uk</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Helmbold, David P.</creator><creator>Littlestone, Nicholas</creator><creator>Long, Philip M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2000</creationdate><title>Apple tasting</title><author>Helmbold, David P. ; Littlestone, Nicholas ; Long, Philip M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-2dd7152b774ea79e8b9a13a2e0af20a38e61f0317bd3b3fca1f033fea95aef893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helmbold, David P.</creatorcontrib><creatorcontrib>Littlestone, Nicholas</creatorcontrib><creatorcontrib>Long, Philip M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Information and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helmbold, David P.</au><au>Littlestone, Nicholas</au><au>Long, Philip M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apple tasting</atitle><jtitle>Information and computation</jtitle><date>2000</date><risdate>2000</risdate><volume>161</volume><issue>2</issue><spage>85</spage><epage>139</epage><pages>85-139</pages><issn>0890-5401</issn><eissn>1090-2651</eissn><coden>INFCEC</coden><abstract>In the standard on-line model the learning algorithm tries to minimizethe total number of mistakes made in a series of trials. On each trial the learner sees an instance, makes a prediction of its classification, then finds out the correct classification. We define a natural variant of this model (“apple tasting”) where u • the classes are interpreted as the good and bad instances, • the prediction is interpreted as accepting or rejecting the instance,and • the learner gets feedback only when the instance is accepted. We use two transformations to relate the apple tasting model to an enhanced standard model where false acceptances are counted separately from false rejections. We apply our results to obtain a good general-purpose apple tasting algorithm as well as nearly optimal apple tasting algorithms for a variety of standard classes, such as conjunctions and disjunctions of n boolean variables. We also present and analyze a simpler transformation useful when the instances are drawn at random rather than selected by an adversary.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/inco.2000.2870</doi><tpages>55</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-5401
ispartof Information and computation, 2000, Vol.161 (2), p.85-139
issn 0890-5401
1090-2651
language eng
recordid cdi_crossref_primary_10_1006_inco_2000_2870
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Learning and adaptive systems
Theoretical computing
title Apple tasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apple%20tasting&rft.jtitle=Information%20and%20computation&rft.au=Helmbold,%20David%20P.&rft.date=2000&rft.volume=161&rft.issue=2&rft.spage=85&rft.epage=139&rft.pages=85-139&rft.issn=0890-5401&rft.eissn=1090-2651&rft.coden=INFCEC&rft_id=info:doi/10.1006/inco.2000.2870&rft_dat=%3Celsevier_cross%3ES0890540100928700%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0890540100928700&rfr_iscdi=true